ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifordc GIF version

Theorem ifordc 3596
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifordc (DECID 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))

Proof of Theorem ifordc
StepHypRef Expression
1 exmiddc 837 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 iftrue 3562 . . . . 5 ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 𝐵) = 𝐴)
32orcs 736 . . . 4 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = 𝐴)
4 iftrue 3562 . . . 4 (𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = 𝐴)
53, 4eqtr4d 2229 . . 3 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
6 iffalse 3565 . . . 4 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = if(𝜓, 𝐴, 𝐵))
7 biorf 745 . . . . 5 𝜑 → (𝜓 ↔ (𝜑𝜓)))
87ifbid 3578 . . . 4 𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑𝜓), 𝐴, 𝐵))
96, 8eqtr2d 2227 . . 3 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
105, 9jaoi 717 . 2 ((𝜑 ∨ ¬ 𝜑) → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
111, 10syl 14 1 (DECID 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709  DECID wdc 835   = wceq 1364  ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-if 3558
This theorem is referenced by:  nninfwlpoimlemg  7234
  Copyright terms: Public domain W3C validator