ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifordc GIF version

Theorem ifordc 3644
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifordc (DECID 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))

Proof of Theorem ifordc
StepHypRef Expression
1 exmiddc 841 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 iftrue 3607 . . . . 5 ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 𝐵) = 𝐴)
32orcs 740 . . . 4 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = 𝐴)
4 iftrue 3607 . . . 4 (𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = 𝐴)
53, 4eqtr4d 2265 . . 3 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
6 iffalse 3610 . . . 4 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = if(𝜓, 𝐴, 𝐵))
7 biorf 749 . . . . 5 𝜑 → (𝜓 ↔ (𝜑𝜓)))
87ifbid 3624 . . . 4 𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑𝜓), 𝐴, 𝐵))
96, 8eqtr2d 2263 . . 3 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
105, 9jaoi 721 . 2 ((𝜑 ∨ ¬ 𝜑) → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
111, 10syl 14 1 (DECID 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713  DECID wdc 839   = wceq 1395  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  nninfwlpoimlemg  7338
  Copyright terms: Public domain W3C validator