ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifordc GIF version

Theorem ifordc 3565
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifordc (DECID 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))

Proof of Theorem ifordc
StepHypRef Expression
1 exmiddc 832 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 iftrue 3532 . . . . 5 ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 𝐵) = 𝐴)
32orcs 731 . . . 4 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = 𝐴)
4 iftrue 3532 . . . 4 (𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = 𝐴)
53, 4eqtr4d 2207 . . 3 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
6 iffalse 3535 . . . 4 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = if(𝜓, 𝐴, 𝐵))
7 biorf 740 . . . . 5 𝜑 → (𝜓 ↔ (𝜑𝜓)))
87ifbid 3548 . . . 4 𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑𝜓), 𝐴, 𝐵))
96, 8eqtr2d 2205 . . 3 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
105, 9jaoi 712 . 2 ((𝜑 ∨ ¬ 𝜑) → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
111, 10syl 14 1 (DECID 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 704  DECID wdc 830   = wceq 1349  ifcif 3527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-11 1500  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-dc 831  df-tru 1352  df-nf 1455  df-sb 1757  df-clab 2158  df-cleq 2164  df-clel 2167  df-if 3528
This theorem is referenced by:  nninfwlpoimlemg  7155
  Copyright terms: Public domain W3C validator