| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifordc | GIF version | ||
| Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ifordc | ⊢ (DECID 𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 838 | . 2 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 2 | iftrue 3580 | . . . . 5 ⊢ ((𝜑 ∨ 𝜓) → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | orcs 737 | . . . 4 ⊢ (𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = 𝐴) |
| 4 | iftrue 3580 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = 𝐴) | |
| 5 | 3, 4 | eqtr4d 2242 | . . 3 ⊢ (𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) |
| 6 | iffalse 3583 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = if(𝜓, 𝐴, 𝐵)) | |
| 7 | biorf 746 | . . . . 5 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
| 8 | 7 | ifbid 3597 | . . . 4 ⊢ (¬ 𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑 ∨ 𝜓), 𝐴, 𝐵)) |
| 9 | 6, 8 | eqtr2d 2240 | . . 3 ⊢ (¬ 𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) |
| 10 | 5, 9 | jaoi 718 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) |
| 11 | 1, 10 | syl 14 | 1 ⊢ (DECID 𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 DECID wdc 836 = wceq 1373 ifcif 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-if 3576 |
| This theorem is referenced by: nninfwlpoimlemg 7292 |
| Copyright terms: Public domain | W3C validator |