![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbid | Unicode version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifbid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifbid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbid.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ifbi 3566 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-if 3547 |
This theorem is referenced by: ifbieq1d 3568 ifbieq2d 3570 ifbieq12d 3572 ifandc 3584 ifordc 3585 nnnninf 7138 nnnninf2 7139 nnnninfeq 7140 nninfisollemne 7143 nninfisol 7145 fodjum 7158 fodju0 7159 fodjuomni 7161 fodjumkv 7172 nninfwlporlemd 7184 nninfwlpor 7186 nninfwlpoimlemg 7187 nninfwlpoimlemginf 7188 nninfwlpoim 7190 xaddval 9859 0tonninf 10453 1tonninf 10454 sumeq1 11377 summodc 11405 zsumdc 11406 fsum3 11409 isumss 11413 sumsplitdc 11454 prodeq1f 11574 zproddc 11601 fprodseq 11605 pcmpt 12355 pcmpt2 12356 pcfac 12362 lgsval 14758 lgsneg 14778 lgsdilem 14781 lgsdir2 14787 lgsdir 14789 bj-charfunbi 14916 subctctexmid 15104 nninfalllem1 15111 nninfsellemdc 15113 nninfself 15116 nninfsellemeq 15117 nninfsellemqall 15118 nninfsellemeqinf 15119 nninfomni 15122 nninffeq 15123 dceqnconst 15162 dcapnconst 15163 |
Copyright terms: Public domain | W3C validator |