![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbid | Unicode version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifbid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifbid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbid.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ifbi 3577 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-if 3558 |
This theorem is referenced by: ifbieq1d 3579 ifbieq2d 3581 ifbieq12d 3583 ifandc 3595 ifordc 3596 pw2f1odclem 6890 nnnninf 7185 nnnninf2 7186 nnnninfeq 7187 nninfisollemne 7190 nninfisol 7192 fodjum 7205 fodju0 7206 fodjuomni 7208 fodjumkv 7219 nninfwlporlemd 7231 nninfwlpor 7233 nninfwlpoimlemg 7234 nninfwlpoimlemginf 7235 nninfwlpoim 7237 xaddval 9911 0tonninf 10511 1tonninf 10512 nninfinf 10514 sumeq1 11498 summodc 11526 zsumdc 11527 fsum3 11530 isumss 11534 sumsplitdc 11575 prodeq1f 11695 zproddc 11722 fprodseq 11726 nninfctlemfo 12177 pcmpt 12481 pcmpt2 12482 pcfac 12488 lgsval 15120 lgsneg 15140 lgsdilem 15143 lgsdir2 15149 lgsdir 15151 bj-charfunbi 15303 subctctexmid 15491 nninfalllem1 15498 nninfsellemdc 15500 nninfself 15503 nninfsellemeq 15504 nninfsellemqall 15505 nninfsellemeqinf 15506 nninfomni 15509 nninffeq 15510 dceqnconst 15550 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |