![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbid | Unicode version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifbid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifbid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbid.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ifbi 3578 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-if 3559 |
This theorem is referenced by: ifbieq1d 3580 ifbieq2d 3582 ifbieq12d 3584 ifandc 3596 ifordc 3597 pw2f1odclem 6892 nnnninf 7187 nnnninf2 7188 nnnninfeq 7189 nninfisollemne 7192 nninfisol 7194 fodjum 7207 fodju0 7208 fodjuomni 7210 fodjumkv 7221 nninfwlporlemd 7233 nninfwlpor 7235 nninfwlpoimlemg 7236 nninfwlpoimlemginf 7237 nninfwlpoim 7239 xaddval 9914 0tonninf 10514 1tonninf 10515 nninfinf 10517 sumeq1 11501 summodc 11529 zsumdc 11530 fsum3 11533 isumss 11537 sumsplitdc 11578 prodeq1f 11698 zproddc 11725 fprodseq 11729 nninfctlemfo 12180 pcmpt 12484 pcmpt2 12485 pcfac 12491 lgsval 15161 lgsneg 15181 lgsdilem 15184 lgsdir2 15190 lgsdir 15192 bj-charfunbi 15373 subctctexmid 15561 nninfalllem1 15568 nninfsellemdc 15570 nninfself 15573 nninfsellemeq 15574 nninfsellemqall 15575 nninfsellemeqinf 15576 nninfomni 15579 nninffeq 15580 dceqnconst 15620 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |