| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbid | Unicode version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifbid.1 |
|
| Ref | Expression |
|---|---|
| ifbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbid.1 |
. 2
| |
| 2 | ifbi 3591 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-if 3572 |
| This theorem is referenced by: ifbieq1d 3593 ifbieq2d 3595 ifbieq12d 3597 ifandc 3610 ifordc 3611 pw2f1odclem 6933 nnnninf 7230 nnnninf2 7231 nnnninfeq 7232 nninfisollemne 7235 nninfisol 7237 fodjum 7250 fodju0 7251 fodjuomni 7253 fodjumkv 7264 nninfwlporlemd 7276 nninfwlpor 7278 nninfwlpoimlemg 7279 nninfwlpoimlemginf 7280 nninfwlpoim 7283 nninfinfwlpo 7284 xaddval 9969 0tonninf 10587 1tonninf 10588 nninfinf 10590 sumeq1 11699 summodc 11727 zsumdc 11728 fsum3 11731 isumss 11735 sumsplitdc 11776 prodeq1f 11896 zproddc 11923 fprodseq 11927 nninfctlemfo 12394 pcmpt 12699 pcmpt2 12700 pcfac 12706 lgsval 15514 lgsneg 15534 lgsdilem 15537 lgsdir2 15543 lgsdir 15545 bj-charfunbi 15784 2omap 15969 subctctexmid 15974 nninfalllem1 15982 nninfsellemdc 15984 nninfself 15987 nninfsellemeq 15988 nninfsellemqall 15989 nninfsellemeqinf 15990 nninfomni 15993 nninffeq 15994 nnnninfex 15996 dceqnconst 16036 dcapnconst 16037 |
| Copyright terms: Public domain | W3C validator |