| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbid | Unicode version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifbid.1 |
|
| Ref | Expression |
|---|---|
| ifbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbid.1 |
. 2
| |
| 2 | ifbi 3623 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-if 3603 |
| This theorem is referenced by: ifbieq1d 3625 ifbieq2d 3627 ifbieq12d 3629 ifandc 3643 ifordc 3644 pw2f1odclem 6995 nnnninf 7293 nnnninf2 7294 nnnninfeq 7295 nninfisollemne 7298 nninfisol 7300 fodjum 7313 fodju0 7314 fodjuomni 7316 fodjumkv 7327 nninfwlporlemd 7339 nninfwlpor 7341 nninfwlpoimlemg 7342 nninfwlpoimlemginf 7343 nninfwlpoim 7346 nninfinfwlpo 7347 xaddval 10041 0tonninf 10662 1tonninf 10663 nninfinf 10665 sumeq1 11866 summodc 11894 zsumdc 11895 fsum3 11898 isumss 11902 sumsplitdc 11943 prodeq1f 12063 zproddc 12090 fprodseq 12094 nninfctlemfo 12561 pcmpt 12866 pcmpt2 12867 pcfac 12873 lgsval 15683 lgsneg 15703 lgsdilem 15706 lgsdir2 15712 lgsdir 15714 bj-charfunbi 16174 2omap 16359 pw1map 16361 subctctexmid 16366 nninfalllem1 16374 nninfsellemdc 16376 nninfself 16379 nninfsellemeq 16380 nninfsellemqall 16381 nninfsellemeqinf 16382 nninfomni 16385 nninffeq 16386 nnnninfex 16388 dceqnconst 16428 dcapnconst 16429 |
| Copyright terms: Public domain | W3C validator |