Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbid | Unicode version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifbid.1 |
Ref | Expression |
---|---|
ifbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbid.1 | . 2 | |
2 | ifbi 3545 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 cif 3525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-if 3526 |
This theorem is referenced by: ifbieq1d 3547 ifbieq2d 3549 ifbieq12d 3551 ifandc 3562 nnnninf 7098 nnnninf2 7099 nnnninfeq 7100 nninfisollemne 7103 nninfisol 7105 fodjum 7118 fodju0 7119 fodjuomni 7121 fodjumkv 7132 xaddval 9789 0tonninf 10382 1tonninf 10383 sumeq1 11305 summodc 11333 zsumdc 11334 fsum3 11337 isumss 11341 sumsplitdc 11382 prodeq1f 11502 zproddc 11529 fprodseq 11533 pcmpt 12282 pcmpt2 12283 pcfac 12289 lgsval 13620 lgsneg 13640 lgsdilem 13643 lgsdir2 13649 lgsdir 13651 bj-charfunbi 13768 subctctexmid 13956 nninfalllem1 13963 nninfsellemdc 13965 nninfself 13968 nninfsellemeq 13969 nninfsellemqall 13970 nninfsellemeqinf 13971 nninfomni 13974 nninffeq 13975 dceqnconst 14013 dcapnconst 14014 |
Copyright terms: Public domain | W3C validator |