ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemg Unicode version

Theorem nninfwlpoimlemg 7303
Description: Lemma for nninfwlpoim 7307. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f  |-  ( ph  ->  F : om --> 2o )
nninfwlpoimlemg.g  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
Assertion
Ref Expression
nninfwlpoimlemg  |-  ( ph  ->  G  e. )
Distinct variable groups:    i, F    ph, i, x
Allowed substitution hints:    F( x)    G( x, i)

Proof of Theorem nninfwlpoimlemg
Dummy variables  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6550 . . . . . 6  |-  (/)  e.  2o
21a1i 9 . . . . 5  |-  ( (
ph  /\  i  e.  om )  ->  (/)  e.  2o )
3 1lt2o 6551 . . . . . 6  |-  1o  e.  2o
43a1i 9 . . . . 5  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  2o )
5 peano2 4661 . . . . . . . 8  |-  ( i  e.  om  ->  suc  i  e.  om )
65adantl 277 . . . . . . 7  |-  ( (
ph  /\  i  e.  om )  ->  suc  i  e. 
om )
7 nnfi 6995 . . . . . . 7  |-  ( suc  i  e.  om  ->  suc  i  e.  Fin )
86, 7syl 14 . . . . . 6  |-  ( (
ph  /\  i  e.  om )  ->  suc  i  e. 
Fin )
9 2ssom 6633 . . . . . . . . 9  |-  2o  C_  om
10 nninfwlpoimlemg.f . . . . . . . . . . 11  |-  ( ph  ->  F : om --> 2o )
1110ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  om )  /\  x  e.  suc  i )  ->  F : om --> 2o )
12 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  om )  /\  x  e.  suc  i )  ->  x  e.  suc  i )
136adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  om )  /\  x  e.  suc  i )  ->  suc  i  e.  om )
14 elnn 4672 . . . . . . . . . . 11  |-  ( ( x  e.  suc  i  /\  suc  i  e.  om )  ->  x  e.  om )
1512, 13, 14syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  om )  /\  x  e.  suc  i )  ->  x  e.  om )
1611, 15ffvelcdmd 5739 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  om )  /\  x  e.  suc  i )  -> 
( F `  x
)  e.  2o )
179, 16sselid 3199 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  om )  /\  x  e.  suc  i )  -> 
( F `  x
)  e.  om )
18 peano1 4660 . . . . . . . . 9  |-  (/)  e.  om
1918a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  om )  /\  x  e.  suc  i )  ->  (/) 
e.  om )
20 nndceq 6608 . . . . . . . 8  |-  ( ( ( F `  x
)  e.  om  /\  (/) 
e.  om )  -> DECID  ( F `  x
)  =  (/) )
2117, 19, 20syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  om )  /\  x  e.  suc  i )  -> DECID  ( F `  x )  =  (/) )
2221ralrimiva 2581 . . . . . 6  |-  ( (
ph  /\  i  e.  om )  ->  A. x  e.  suc  iDECID  ( F `  x
)  =  (/) )
23 finexdc 7025 . . . . . 6  |-  ( ( suc  i  e.  Fin  /\ 
A. x  e.  suc  iDECID  ( F `  x )  =  (/) )  -> DECID  E. x  e.  suc  i ( F `  x )  =  (/) )
248, 22, 23syl2anc 411 . . . . 5  |-  ( (
ph  /\  i  e.  om )  -> DECID  E. x  e.  suc  i ( F `  x )  =  (/) )
252, 4, 24ifcldcd 3617 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  if ( E. x  e.  suc  i ( F `  x )  =  (/) ,  (/) ,  1o )  e.  2o )
26 nninfwlpoimlemg.g . . . 4  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
2725, 26fmptd 5757 . . 3  |-  ( ph  ->  G : om --> 2o )
28 2onn 6630 . . . . 5  |-  2o  e.  om
2928elexi 2789 . . . 4  |-  2o  e.  _V
30 omex 4659 . . . 4  |-  om  e.  _V
3129, 30elmap 6787 . . 3  |-  ( G  e.  ( 2o  ^m  om )  <->  G : om --> 2o )
3227, 31sylibr 134 . 2  |-  ( ph  ->  G  e.  ( 2o 
^m  om ) )
33 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  om )  /\  E. x  e.  suc  j ( F `  x )  =  (/) )  ->  E. x  e.  suc  j ( F `
 x )  =  (/) )
3433iftrued 3586 . . . . . 6  |-  ( ( ( ph  /\  j  e.  om )  /\  E. x  e.  suc  j ( F `  x )  =  (/) )  ->  if ( E. x  e.  suc  j ( F `  x )  =  (/) ,  (/) ,  if ( E. x  e.  { suc  j }  ( F `  x )  =  (/) ,  (/) ,  1o ) )  =  (/) )
35 suceq 4467 . . . . . . . . . . . 12  |-  ( i  =  suc  j  ->  suc  i  =  suc  suc  j )
3635rexeqdv 2712 . . . . . . . . . . 11  |-  ( i  =  suc  j  -> 
( E. x  e. 
suc  i ( F `
 x )  =  (/) 
<->  E. x  e.  suc  suc  j ( F `  x )  =  (/) ) )
3736ifbid 3601 . . . . . . . . . 10  |-  ( i  =  suc  j  ->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o )  =  if ( E. x  e.  suc  suc  j ( F `  x )  =  (/) ,  (/) ,  1o ) )
38 peano2 4661 . . . . . . . . . . 11  |-  ( j  e.  om  ->  suc  j  e.  om )
3938adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  om )  ->  suc  j  e. 
om )
401a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  om )  ->  (/)  e.  2o )
413a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  om )  ->  1o  e.  2o )
42 peano2 4661 . . . . . . . . . . . . . 14  |-  ( suc  j  e.  om  ->  suc 
suc  j  e.  om )
4339, 42syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  om )  ->  suc  suc  j  e.  om )
44 nnfi 6995 . . . . . . . . . . . . 13  |-  ( suc 
suc  j  e.  om  ->  suc  suc  j  e.  Fin )
4543, 44syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  om )  ->  suc  suc  j  e.  Fin )
4610ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  suc  j )  ->  F : om --> 2o )
47 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  suc  j )  ->  x  e.  suc  suc  j )
4843adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  suc  j )  ->  suc  suc  j  e.  om )
49 elnn 4672 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  suc  suc  j  /\  suc  suc  j  e.  om )  ->  x  e.  om )
5047, 48, 49syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  suc  j )  ->  x  e.  om )
5146, 50ffvelcdmd 5739 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  suc  j )  ->  ( F `  x
)  e.  2o )
529, 51sselid 3199 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  suc  j )  ->  ( F `  x
)  e.  om )
5318a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  suc  j )  -> 
(/)  e.  om )
5452, 53, 20syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  suc  j )  -> DECID  ( F `  x )  =  (/) )
5554ralrimiva 2581 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  om )  ->  A. x  e.  suc  suc  jDECID  ( F `  x )  =  (/) )
56 finexdc 7025 . . . . . . . . . . . 12  |-  ( ( suc  suc  j  e.  Fin  /\  A. x  e. 
suc  suc  jDECID  ( F `  x
)  =  (/) )  -> DECID  E. x  e.  suc  suc  j ( F `  x )  =  (/) )
5745, 55, 56syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  om )  -> DECID  E. x  e.  suc  suc  j ( F `  x )  =  (/) )
5840, 41, 57ifcldcd 3617 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  om )  ->  if ( E. x  e.  suc  suc  j ( F `  x )  =  (/) ,  (/) ,  1o )  e.  2o )
5926, 37, 39, 58fvmptd3 5696 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  om )  ->  ( G `  suc  j )  =  if ( E. x  e.  suc  suc  j ( F `  x )  =  (/) ,  (/) ,  1o ) )
60 df-suc 4436 . . . . . . . . . . . 12  |-  suc  suc  j  =  ( suc  j  u.  { suc  j } )
6160rexeqi 2710 . . . . . . . . . . 11  |-  ( E. x  e.  suc  suc  j ( F `  x )  =  (/)  <->  E. x  e.  ( suc  j  u.  { suc  j } ) ( F `
 x )  =  (/) )
62 rexun 3361 . . . . . . . . . . 11  |-  ( E. x  e.  ( suc  j  u.  { suc  j } ) ( F `
 x )  =  (/) 
<->  ( E. x  e. 
suc  j ( F `
 x )  =  (/)  \/  E. x  e. 
{ suc  j } 
( F `  x
)  =  (/) ) )
6361, 62bitri 184 . . . . . . . . . 10  |-  ( E. x  e.  suc  suc  j ( F `  x )  =  (/)  <->  ( E. x  e.  suc  j ( F `  x )  =  (/)  \/ 
E. x  e.  { suc  j }  ( F `
 x )  =  (/) ) )
64 ifbi 3600 . . . . . . . . . 10  |-  ( ( E. x  e.  suc  suc  j ( F `  x )  =  (/)  <->  ( E. x  e.  suc  j ( F `  x )  =  (/)  \/ 
E. x  e.  { suc  j }  ( F `
 x )  =  (/) ) )  ->  if ( E. x  e.  suc  suc  j ( F `  x )  =  (/) ,  (/) ,  1o )  =  if ( ( E. x  e.  suc  j
( F `  x
)  =  (/)  \/  E. x  e.  { suc  j }  ( F `  x )  =  (/) ) ,  (/) ,  1o ) )
6563, 64ax-mp 5 . . . . . . . . 9  |-  if ( E. x  e.  suc  suc  j ( F `  x )  =  (/) ,  (/) ,  1o )  =  if ( ( E. x  e.  suc  j
( F `  x
)  =  (/)  \/  E. x  e.  { suc  j }  ( F `  x )  =  (/) ) ,  (/) ,  1o )
6659, 65eqtrdi 2256 . . . . . . . 8  |-  ( (
ph  /\  j  e.  om )  ->  ( G `  suc  j )  =  if ( ( E. x  e.  suc  j
( F `  x
)  =  (/)  \/  E. x  e.  { suc  j }  ( F `  x )  =  (/) ) ,  (/) ,  1o ) )
67 nnfi 6995 . . . . . . . . . . 11  |-  ( suc  j  e.  om  ->  suc  j  e.  Fin )
6839, 67syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  om )  ->  suc  j  e. 
Fin )
6910ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  j )  ->  F : om --> 2o )
70 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  j )  ->  x  e.  suc  j )
7139adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  j )  ->  suc  j  e.  om )
72 elnn 4672 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  suc  j  /\  suc  j  e.  om )  ->  x  e.  om )
7370, 71, 72syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  j )  ->  x  e.  om )
7469, 73ffvelcdmd 5739 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  j )  -> 
( F `  x
)  e.  2o )
759, 74sselid 3199 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  j )  -> 
( F `  x
)  e.  om )
7618a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  j )  ->  (/) 
e.  om )
7775, 76, 20syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  om )  /\  x  e.  suc  j )  -> DECID  ( F `  x )  =  (/) )
7877ralrimiva 2581 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  om )  ->  A. x  e.  suc  jDECID  ( F `  x
)  =  (/) )
79 finexdc 7025 . . . . . . . . . 10  |-  ( ( suc  j  e.  Fin  /\ 
A. x  e.  suc  jDECID  ( F `  x )  =  (/) )  -> DECID  E. x  e.  suc  j ( F `  x )  =  (/) )
8068, 78, 79syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  om )  -> DECID  E. x  e.  suc  j ( F `  x )  =  (/) )
81 ifordc 3621 . . . . . . . . 9  |-  (DECID  E. x  e.  suc  j ( F `
 x )  =  (/)  ->  if ( ( E. x  e.  suc  j ( F `  x )  =  (/)  \/ 
E. x  e.  { suc  j }  ( F `
 x )  =  (/) ) ,  (/) ,  1o )  =  if ( E. x  e.  suc  j ( F `  x )  =  (/) ,  (/) ,  if ( E. x  e.  { suc  j }  ( F `  x )  =  (/) ,  (/) ,  1o ) ) )
8280, 81syl 14 . . . . . . . 8  |-  ( (
ph  /\  j  e.  om )  ->  if (
( E. x  e. 
suc  j ( F `
 x )  =  (/)  \/  E. x  e. 
{ suc  j } 
( F `  x
)  =  (/) ) ,  (/) ,  1o )  =  if ( E. x  e.  suc  j ( F `
 x )  =  (/) ,  (/) ,  if ( E. x  e.  { suc  j }  ( F `
 x )  =  (/) ,  (/) ,  1o ) ) )
8366, 82eqtrd 2240 . . . . . . 7  |-  ( (
ph  /\  j  e.  om )  ->  ( G `  suc  j )  =  if ( E. x  e.  suc  j ( F `
 x )  =  (/) ,  (/) ,  if ( E. x  e.  { suc  j }  ( F `
 x )  =  (/) ,  (/) ,  1o ) ) )
8483adantr 276 . . . . . 6  |-  ( ( ( ph  /\  j  e.  om )  /\  E. x  e.  suc  j ( F `  x )  =  (/) )  ->  ( G `  suc  j )  =  if ( E. x  e.  suc  j
( F `  x
)  =  (/) ,  (/) ,  if ( E. x  e.  { suc  j }  ( F `  x
)  =  (/) ,  (/) ,  1o ) ) )
85 suceq 4467 . . . . . . . . . . 11  |-  ( i  =  j  ->  suc  i  =  suc  j )
8685rexeqdv 2712 . . . . . . . . . 10  |-  ( i  =  j  ->  ( E. x  e.  suc  i ( F `  x )  =  (/)  <->  E. x  e.  suc  j ( F `  x )  =  (/) ) )
8786ifbid 3601 . . . . . . . . 9  |-  ( i  =  j  ->  if ( E. x  e.  suc  i ( F `  x )  =  (/) ,  (/) ,  1o )  =  if ( E. x  e.  suc  j ( F `
 x )  =  (/) ,  (/) ,  1o ) )
88 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  om )  ->  j  e.  om )
8940, 41, 80ifcldcd 3617 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  om )  ->  if ( E. x  e.  suc  j ( F `  x )  =  (/) ,  (/) ,  1o )  e.  2o )
9026, 87, 88, 89fvmptd3 5696 . . . . . . . 8  |-  ( (
ph  /\  j  e.  om )  ->  ( G `  j )  =  if ( E. x  e. 
suc  j ( F `
 x )  =  (/) ,  (/) ,  1o ) )
9190adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  om )  /\  E. x  e.  suc  j ( F `  x )  =  (/) )  ->  ( G `  j )  =  if ( E. x  e.  suc  j ( F `
 x )  =  (/) ,  (/) ,  1o ) )
9233iftrued 3586 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  om )  /\  E. x  e.  suc  j ( F `  x )  =  (/) )  ->  if ( E. x  e.  suc  j ( F `  x )  =  (/) ,  (/) ,  1o )  =  (/) )
9391, 92eqtrd 2240 . . . . . 6  |-  ( ( ( ph  /\  j  e.  om )  /\  E. x  e.  suc  j ( F `  x )  =  (/) )  ->  ( G `  j )  =  (/) )
9434, 84, 933eqtr4d 2250 . . . . 5  |-  ( ( ( ph  /\  j  e.  om )  /\  E. x  e.  suc  j ( F `  x )  =  (/) )  ->  ( G `  suc  j )  =  ( G `  j ) )
95 eqimss 3255 . . . . 5  |-  ( ( G `  suc  j
)  =  ( G `
 j )  -> 
( G `  suc  j )  C_  ( G `  j )
)
9694, 95syl 14 . . . 4  |-  ( ( ( ph  /\  j  e.  om )  /\  E. x  e.  suc  j ( F `  x )  =  (/) )  ->  ( G `  suc  j ) 
C_  ( G `  j ) )
9759, 58eqeltrd 2284 . . . . . . 7  |-  ( (
ph  /\  j  e.  om )  ->  ( G `  suc  j )  e.  2o )
98 el2oss1o 6552 . . . . . . 7  |-  ( ( G `  suc  j
)  e.  2o  ->  ( G `  suc  j
)  C_  1o )
9997, 98syl 14 . . . . . 6  |-  ( (
ph  /\  j  e.  om )  ->  ( G `  suc  j )  C_  1o )
10099adantr 276 . . . . 5  |-  ( ( ( ph  /\  j  e.  om )  /\  -.  E. x  e.  suc  j
( F `  x
)  =  (/) )  -> 
( G `  suc  j )  C_  1o )
10190adantr 276 . . . . . 6  |-  ( ( ( ph  /\  j  e.  om )  /\  -.  E. x  e.  suc  j
( F `  x
)  =  (/) )  -> 
( G `  j
)  =  if ( E. x  e.  suc  j ( F `  x )  =  (/) ,  (/) ,  1o ) )
102 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  om )  /\  -.  E. x  e.  suc  j
( F `  x
)  =  (/) )  ->  -.  E. x  e.  suc  j ( F `  x )  =  (/) )
103102iffalsed 3589 . . . . . 6  |-  ( ( ( ph  /\  j  e.  om )  /\  -.  E. x  e.  suc  j
( F `  x
)  =  (/) )  ->  if ( E. x  e. 
suc  j ( F `
 x )  =  (/) ,  (/) ,  1o )  =  1o )
104101, 103eqtrd 2240 . . . . 5  |-  ( ( ( ph  /\  j  e.  om )  /\  -.  E. x  e.  suc  j
( F `  x
)  =  (/) )  -> 
( G `  j
)  =  1o )
105100, 104sseqtrrd 3240 . . . 4  |-  ( ( ( ph  /\  j  e.  om )  /\  -.  E. x  e.  suc  j
( F `  x
)  =  (/) )  -> 
( G `  suc  j )  C_  ( G `  j )
)
106 exmiddc 838 . . . . 5  |-  (DECID  E. x  e.  suc  j ( F `
 x )  =  (/)  ->  ( E. x  e.  suc  j ( F `
 x )  =  (/)  \/  -.  E. x  e.  suc  j ( F `
 x )  =  (/) ) )
10780, 106syl 14 . . . 4  |-  ( (
ph  /\  j  e.  om )  ->  ( E. x  e.  suc  j ( F `  x )  =  (/)  \/  -.  E. x  e.  suc  j
( F `  x
)  =  (/) ) )
10896, 105, 107mpjaodan 800 . . 3  |-  ( (
ph  /\  j  e.  om )  ->  ( G `  suc  j )  C_  ( G `  j ) )
109108ralrimiva 2581 . 2  |-  ( ph  ->  A. j  e.  om  ( G `  suc  j
)  C_  ( G `  j ) )
110 fveq1 5598 . . . . 5  |-  ( f  =  G  ->  (
f `  suc  j )  =  ( G `  suc  j ) )
111 fveq1 5598 . . . . 5  |-  ( f  =  G  ->  (
f `  j )  =  ( G `  j ) )
112110, 111sseq12d 3232 . . . 4  |-  ( f  =  G  ->  (
( f `  suc  j )  C_  (
f `  j )  <->  ( G `  suc  j
)  C_  ( G `  j ) ) )
113112ralbidv 2508 . . 3  |-  ( f  =  G  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  ( G `  suc  j ) 
C_  ( G `  j ) ) )
114 df-nninf 7248 . . 3  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
115113, 114elrab2 2939 . 2  |-  ( G  e.  <->  ( G  e.  ( 2o 
^m  om )  /\  A. j  e.  om  ( G `  suc  j ) 
C_  ( G `  j ) ) )
11632, 109, 115sylanbrc 417 1  |-  ( ph  ->  G  e. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    u. cun 3172    C_ wss 3174   (/)c0 3468   ifcif 3579   {csn 3643    |-> cmpt 4121   suc csuc 4430   omcom 4656   -->wf 5286   ` cfv 5290  (class class class)co 5967   1oc1o 6518   2oc2o 6519    ^m cmap 6758   Fincfn 6850  ℕxnninf 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-er 6643  df-map 6760  df-en 6851  df-fin 6853  df-nninf 7248
This theorem is referenced by:  nninfwlpoimlemdc  7305  nninfinfwlpolem  7306
  Copyright terms: Public domain W3C validator