ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinin1m Unicode version

Theorem iinin1m 3986
Description: Indexed intersection of intersection. Compare to Theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iinin1m  |-  ( E. x  x  e.  A  -> 
|^|_ x  e.  A  ( C  i^i  B )  =  ( |^|_ x  e.  A  C  i^i  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iinin1m
StepHypRef Expression
1 iinin2m 3985 . 2  |-  ( E. x  x  e.  A  -> 
|^|_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  |^|_
x  e.  A  C
) )
2 incom 3355 . . . 4  |-  ( C  i^i  B )  =  ( B  i^i  C
)
32a1i 9 . . 3  |-  ( x  e.  A  ->  ( C  i^i  B )  =  ( B  i^i  C
) )
43iineq2i 3935 . 2  |-  |^|_ x  e.  A  ( C  i^i  B )  =  |^|_ x  e.  A  ( B  i^i  C )
5 incom 3355 . 2  |-  ( |^|_ x  e.  A  C  i^i  B )  =  ( B  i^i  |^|_ x  e.  A  C )
61, 4, 53eqtr4g 2254 1  |-  ( E. x  x  e.  A  -> 
|^|_ x  e.  A  ( C  i^i  B )  =  ( |^|_ x  e.  A  C  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506    e. wcel 2167    i^i cin 3156   |^|_ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-iin 3919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator