ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinin1m GIF version

Theorem iinin1m 3997
Description: Indexed intersection of intersection. Compare to Theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iinin1m (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iinin1m
StepHypRef Expression
1 iinin2m 3996 . 2 (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
2 incom 3365 . . . 4 (𝐶𝐵) = (𝐵𝐶)
32a1i 9 . . 3 (𝑥𝐴 → (𝐶𝐵) = (𝐵𝐶))
43iineq2i 3946 . 2 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐵𝐶)
5 incom 3365 . 2 ( 𝑥𝐴 𝐶𝐵) = (𝐵 𝑥𝐴 𝐶)
61, 4, 53eqtr4g 2263 1 (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wex 1515  wcel 2176  cin 3165   ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-iin 3930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator