![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iinin1m | GIF version |
Description: Indexed intersection of intersection. Compare to Theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Jim Kingdon, 17-Aug-2018.) |
Ref | Expression |
---|---|
iinin1m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinin2m 3981 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
2 | incom 3351 | . . . 4 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
4 | 3 | iineq2i 3931 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) |
5 | incom 3351 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶) | |
6 | 1, 4, 5 | 3eqtr4g 2251 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∩ cin 3152 ∩ ciin 3913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-iin 3915 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |