ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinin1m GIF version

Theorem iinin1m 3882
Description: Indexed intersection of intersection. Compare to Theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iinin1m (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iinin1m
StepHypRef Expression
1 iinin2m 3881 . 2 (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
2 incom 3268 . . . 4 (𝐶𝐵) = (𝐵𝐶)
32a1i 9 . . 3 (𝑥𝐴 → (𝐶𝐵) = (𝐵𝐶))
43iineq2i 3832 . 2 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐵𝐶)
5 incom 3268 . 2 ( 𝑥𝐴 𝐶𝐵) = (𝐵 𝑥𝐴 𝐶)
61, 4, 53eqtr4g 2197 1 (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wex 1468  wcel 1480  cin 3070   ciin 3814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-in 3077  df-iin 3816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator