ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elriin Unicode version

Theorem elriin 4036
Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
elriin  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
Distinct variable groups:    x, A    x, X    x, B
Allowed substitution hint:    S( x)

Proof of Theorem elriin
StepHypRef Expression
1 elin 3387 . 2  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  B  e. 
|^|_ x  e.  X  S ) )
2 eliin 3970 . . 3  |-  ( B  e.  A  ->  ( B  e.  |^|_ x  e.  X  S  <->  A. x  e.  X  B  e.  S ) )
32pm5.32i 454 . 2  |-  ( ( B  e.  A  /\  B  e.  |^|_ x  e.  X  S )  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
41, 3bitri 184 1  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   A.wral 2508    i^i cin 3196   |^|_ciin 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-iin 3968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator