ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elriin Unicode version

Theorem elriin 3983
Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
elriin  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
Distinct variable groups:    x, A    x, X    x, B
Allowed substitution hint:    S( x)

Proof of Theorem elriin
StepHypRef Expression
1 elin 3342 . 2  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  B  e. 
|^|_ x  e.  X  S ) )
2 eliin 3917 . . 3  |-  ( B  e.  A  ->  ( B  e.  |^|_ x  e.  X  S  <->  A. x  e.  X  B  e.  S ) )
32pm5.32i 454 . 2  |-  ( ( B  e.  A  /\  B  e.  |^|_ x  e.  X  S )  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
41, 3bitri 184 1  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   A.wral 2472    i^i cin 3152   |^|_ciin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-iin 3915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator