ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elriin Unicode version

Theorem elriin 3936
Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
elriin  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
Distinct variable groups:    x, A    x, X    x, B
Allowed substitution hint:    S( x)

Proof of Theorem elriin
StepHypRef Expression
1 elin 3305 . 2  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  B  e. 
|^|_ x  e.  X  S ) )
2 eliin 3871 . . 3  |-  ( B  e.  A  ->  ( B  e.  |^|_ x  e.  X  S  <->  A. x  e.  X  B  e.  S ) )
32pm5.32i 450 . 2  |-  ( ( B  e.  A  /\  B  e.  |^|_ x  e.  X  S )  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
41, 3bitri 183 1  |-  ( B  e.  ( A  i^i  |^|_
x  e.  X  S
)  <->  ( B  e.  A  /\  A. x  e.  X  B  e.  S ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2136   A.wral 2444    i^i cin 3115   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator