ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind Unicode version

Theorem fzind 9185
Description: Induction on the integers from  M to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fzind.1  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
fzind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fzind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fzind.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fzind.5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
fzind.6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fzind  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
Distinct variable groups:    x, K    x, M, y    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fzind
StepHypRef Expression
1 breq1 3935 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  <_  N  <->  M  <_  N ) )
21anbi2d 459 . . . . . . . . . 10  |-  ( x  =  M  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
3 fzind.1 . . . . . . . . . 10  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
42, 3imbi12d 233 . . . . . . . . 9  |-  ( x  =  M  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  M  <_  N )  ->  ps ) ) )
5 breq1 3935 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  <_  N  <->  y  <_  N ) )
65anbi2d 459 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  y  <_  N ) ) )
7 fzind.2 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
86, 7imbi12d 233 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  y  <_  N )  ->  ch ) ) )
9 breq1 3935 . . . . . . . . . . 11  |-  ( x  =  ( y  +  1 )  ->  (
x  <_  N  <->  ( y  +  1 )  <_  N ) )
109anbi2d 459 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )
) )
11 fzind.3 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
1210, 11imbi12d 233 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  th ) ) )
13 breq1 3935 . . . . . . . . . . 11  |-  ( x  =  K  ->  (
x  <_  N  <->  K  <_  N ) )
1413anbi2d 459 . . . . . . . . . 10  |-  ( x  =  K  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  K  <_  N ) ) )
15 fzind.4 . . . . . . . . . 10  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
1614, 15imbi12d 233 . . . . . . . . 9  |-  ( x  =  K  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  K  <_  N )  ->  ta ) ) )
17 fzind.5 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
18173expib 1184 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( N  e.  ZZ  /\  M  <_  N )  ->  ps ) )
19 zre 9077 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  y  e.  RR )
20 zre 9077 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  RR )
21 p1le 8626 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR  /\  N  e.  RR  /\  (
y  +  1 )  <_  N )  -> 
y  <_  N )
22213expia 1183 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR  /\  N  e.  RR )  ->  ( ( y  +  1 )  <_  N  ->  y  <_  N )
)
2319, 20, 22syl2an 287 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( y  +  1 )  <_  N  ->  y  <_  N )
)
2423imdistanda 444 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  (
( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ( N  e.  ZZ  /\  y  <_  N )
) )
2524imim1d 75 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  ch ) ) )
26253ad2ant2 1003 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  ch ) ) )
27 zltp1le 9127 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( y  <  N  <->  ( y  +  1 )  <_  N ) )
2827adantlr 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  N  e.  ZZ )  ->  ( y  < 
N  <->  ( y  +  1 )  <_  N
) )
2928expcom 115 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ZZ  ->  (
( y  e.  ZZ  /\  M  <_  y )  ->  ( y  <  N  <->  ( y  +  1 )  <_  N ) ) )
3029pm5.32d 445 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  (
( ( y  e.  ZZ  /\  M  <_ 
y )  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  M  <_  y )  /\  ( y  +  1 )  <_  N )
) )
3130adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  M  <_  y )  /\  ( y  +  1 )  <_  N )
) )
32 fzind.6 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
3332expcom 115 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ch  ->  th ) ) )
34333expa 1181 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ch  ->  th ) ) )
3534com12 30 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  ->  ( ch  ->  th ) ) )
3631, 35sylbird 169 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  (
y  +  1 )  <_  N )  -> 
( ch  ->  th )
) )
3736ex 114 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( ( y  e.  ZZ  /\  M  <_ 
y )  /\  (
y  +  1 )  <_  N )  -> 
( ch  ->  th )
) ) )
3837com23 78 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  (
( ( y  e.  ZZ  /\  M  <_ 
y )  /\  (
y  +  1 )  <_  N )  -> 
( N  e.  ZZ  ->  ( ch  ->  th )
) ) )
3938expd 256 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  (
( y  e.  ZZ  /\  M  <_  y )  ->  ( ( y  +  1 )  <_  N  ->  ( N  e.  ZZ  ->  ( ch  ->  th )
) ) ) )
40393impib 1179 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( y  +  1 )  <_  N  ->  ( N  e.  ZZ  ->  ( ch  ->  th )
) ) )
4140com23 78 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  ( N  e.  ZZ  ->  ( ( y  +  1 )  <_  N  ->  ( ch  ->  th )
) ) )
4241impd 252 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ( ch  ->  th )
) )
4342a2d 26 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  th ) ) )
4426, 43syld 45 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  th ) ) )
454, 8, 12, 16, 18, 44uzind 9181 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  ->  (
( N  e.  ZZ  /\  K  <_  N )  ->  ta ) )
4645expcomd 1417 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta ) ) )
47463expb 1182 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( K  e.  ZZ  /\  M  <_  K )
)  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta )
) )
4847expcom 115 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K )  -> 
( M  e.  ZZ  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta ) ) ) )
4948com23 78 . . . 4  |-  ( ( K  e.  ZZ  /\  M  <_  K )  -> 
( K  <_  N  ->  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ta ) ) ) )
50493impia 1178 . . 3  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ta ) ) )
5150impd 252 . 2  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ta ) )
5251impcom 124 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3932  (class class class)co 5777   RRcr 7638   1c1 7640    + caddc 7642    < clt 7819    <_ cle 7820   ZZcz 9073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-addcom 7739  ax-addass 7741  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-0id 7747  ax-rnegex 7748  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-ltadd 7755
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-br 3933  df-opab 3993  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-iota 5091  df-fun 5128  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-inn 8740  df-n0 8997  df-z 9074
This theorem is referenced by:  fnn0ind  9186  fzind2  10040
  Copyright terms: Public domain W3C validator