Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzind | Unicode version |
Description: Induction on the integers from to inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
fzind.1 | |
fzind.2 | |
fzind.3 | |
fzind.4 | |
fzind.5 | |
fzind.6 |
Ref | Expression |
---|---|
fzind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3992 | . . . . . . . . . . 11 | |
2 | 1 | anbi2d 461 | . . . . . . . . . 10 |
3 | fzind.1 | . . . . . . . . . 10 | |
4 | 2, 3 | imbi12d 233 | . . . . . . . . 9 |
5 | breq1 3992 | . . . . . . . . . . 11 | |
6 | 5 | anbi2d 461 | . . . . . . . . . 10 |
7 | fzind.2 | . . . . . . . . . 10 | |
8 | 6, 7 | imbi12d 233 | . . . . . . . . 9 |
9 | breq1 3992 | . . . . . . . . . . 11 | |
10 | 9 | anbi2d 461 | . . . . . . . . . 10 |
11 | fzind.3 | . . . . . . . . . 10 | |
12 | 10, 11 | imbi12d 233 | . . . . . . . . 9 |
13 | breq1 3992 | . . . . . . . . . . 11 | |
14 | 13 | anbi2d 461 | . . . . . . . . . 10 |
15 | fzind.4 | . . . . . . . . . 10 | |
16 | 14, 15 | imbi12d 233 | . . . . . . . . 9 |
17 | fzind.5 | . . . . . . . . . 10 | |
18 | 17 | 3expib 1201 | . . . . . . . . 9 |
19 | zre 9216 | . . . . . . . . . . . . . 14 | |
20 | zre 9216 | . . . . . . . . . . . . . 14 | |
21 | p1le 8765 | . . . . . . . . . . . . . . 15 | |
22 | 21 | 3expia 1200 | . . . . . . . . . . . . . 14 |
23 | 19, 20, 22 | syl2an 287 | . . . . . . . . . . . . 13 |
24 | 23 | imdistanda 446 | . . . . . . . . . . . 12 |
25 | 24 | imim1d 75 | . . . . . . . . . . 11 |
26 | 25 | 3ad2ant2 1014 | . . . . . . . . . 10 |
27 | zltp1le 9266 | . . . . . . . . . . . . . . . . . . . . . 22 | |
28 | 27 | adantlr 474 | . . . . . . . . . . . . . . . . . . . . 21 |
29 | 28 | expcom 115 | . . . . . . . . . . . . . . . . . . . 20 |
30 | 29 | pm5.32d 447 | . . . . . . . . . . . . . . . . . . 19 |
31 | 30 | adantl 275 | . . . . . . . . . . . . . . . . . 18 |
32 | fzind.6 | . . . . . . . . . . . . . . . . . . . . 21 | |
33 | 32 | expcom 115 | . . . . . . . . . . . . . . . . . . . 20 |
34 | 33 | 3expa 1198 | . . . . . . . . . . . . . . . . . . 19 |
35 | 34 | com12 30 | . . . . . . . . . . . . . . . . . 18 |
36 | 31, 35 | sylbird 169 | . . . . . . . . . . . . . . . . 17 |
37 | 36 | ex 114 | . . . . . . . . . . . . . . . 16 |
38 | 37 | com23 78 | . . . . . . . . . . . . . . 15 |
39 | 38 | expd 256 | . . . . . . . . . . . . . 14 |
40 | 39 | 3impib 1196 | . . . . . . . . . . . . 13 |
41 | 40 | com23 78 | . . . . . . . . . . . 12 |
42 | 41 | impd 252 | . . . . . . . . . . 11 |
43 | 42 | a2d 26 | . . . . . . . . . 10 |
44 | 26, 43 | syld 45 | . . . . . . . . 9 |
45 | 4, 8, 12, 16, 18, 44 | uzind 9323 | . . . . . . . 8 |
46 | 45 | expcomd 1434 | . . . . . . 7 |
47 | 46 | 3expb 1199 | . . . . . 6 |
48 | 47 | expcom 115 | . . . . 5 |
49 | 48 | com23 78 | . . . 4 |
50 | 49 | 3impia 1195 | . . 3 |
51 | 50 | impd 252 | . 2 |
52 | 51 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 c1 7775 caddc 7777 clt 7954 cle 7955 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: fnn0ind 9328 fzind2 10195 |
Copyright terms: Public domain | W3C validator |