ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind Unicode version

Theorem fzind 9368
Description: Induction on the integers from  M to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fzind.1  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
fzind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fzind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fzind.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fzind.5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
fzind.6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fzind  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
Distinct variable groups:    x, K    x, M, y    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fzind
StepHypRef Expression
1 breq1 4007 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  <_  N  <->  M  <_  N ) )
21anbi2d 464 . . . . . . . . . 10  |-  ( x  =  M  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
3 fzind.1 . . . . . . . . . 10  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
42, 3imbi12d 234 . . . . . . . . 9  |-  ( x  =  M  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  M  <_  N )  ->  ps ) ) )
5 breq1 4007 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  <_  N  <->  y  <_  N ) )
65anbi2d 464 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  y  <_  N ) ) )
7 fzind.2 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
86, 7imbi12d 234 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  y  <_  N )  ->  ch ) ) )
9 breq1 4007 . . . . . . . . . . 11  |-  ( x  =  ( y  +  1 )  ->  (
x  <_  N  <->  ( y  +  1 )  <_  N ) )
109anbi2d 464 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )
) )
11 fzind.3 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
1210, 11imbi12d 234 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  th ) ) )
13 breq1 4007 . . . . . . . . . . 11  |-  ( x  =  K  ->  (
x  <_  N  <->  K  <_  N ) )
1413anbi2d 464 . . . . . . . . . 10  |-  ( x  =  K  ->  (
( N  e.  ZZ  /\  x  <_  N )  <->  ( N  e.  ZZ  /\  K  <_  N ) ) )
15 fzind.4 . . . . . . . . . 10  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
1614, 15imbi12d 234 . . . . . . . . 9  |-  ( x  =  K  ->  (
( ( N  e.  ZZ  /\  x  <_  N )  ->  ph )  <->  ( ( N  e.  ZZ  /\  K  <_  N )  ->  ta ) ) )
17 fzind.5 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
18173expib 1206 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( N  e.  ZZ  /\  M  <_  N )  ->  ps ) )
19 zre 9257 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  y  e.  RR )
20 zre 9257 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  RR )
21 p1le 8806 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR  /\  N  e.  RR  /\  (
y  +  1 )  <_  N )  -> 
y  <_  N )
22213expia 1205 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR  /\  N  e.  RR )  ->  ( ( y  +  1 )  <_  N  ->  y  <_  N )
)
2319, 20, 22syl2an 289 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( y  +  1 )  <_  N  ->  y  <_  N )
)
2423imdistanda 448 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  (
( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ( N  e.  ZZ  /\  y  <_  N )
) )
2524imim1d 75 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  ch ) ) )
26253ad2ant2 1019 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  ch ) ) )
27 zltp1le 9307 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( y  <  N  <->  ( y  +  1 )  <_  N ) )
2827adantlr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  N  e.  ZZ )  ->  ( y  < 
N  <->  ( y  +  1 )  <_  N
) )
2928expcom 116 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ZZ  ->  (
( y  e.  ZZ  /\  M  <_  y )  ->  ( y  <  N  <->  ( y  +  1 )  <_  N ) ) )
3029pm5.32d 450 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  (
( ( y  e.  ZZ  /\  M  <_ 
y )  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  M  <_  y )  /\  ( y  +  1 )  <_  N )
) )
3130adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  M  <_  y )  /\  ( y  +  1 )  <_  N )
) )
32 fzind.6 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
3332expcom 116 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ch  ->  th ) ) )
34333expa 1203 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ch  ->  th ) ) )
3534com12 30 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  y  <  N )  ->  ( ch  ->  th ) ) )
3631, 35sylbird 170 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( y  e.  ZZ  /\  M  <_  y )  /\  (
y  +  1 )  <_  N )  -> 
( ch  ->  th )
) )
3736ex 115 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( ( y  e.  ZZ  /\  M  <_ 
y )  /\  (
y  +  1 )  <_  N )  -> 
( ch  ->  th )
) ) )
3837com23 78 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  (
( ( y  e.  ZZ  /\  M  <_ 
y )  /\  (
y  +  1 )  <_  N )  -> 
( N  e.  ZZ  ->  ( ch  ->  th )
) ) )
3938expd 258 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  (
( y  e.  ZZ  /\  M  <_  y )  ->  ( ( y  +  1 )  <_  N  ->  ( N  e.  ZZ  ->  ( ch  ->  th )
) ) ) )
40393impib 1201 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( y  +  1 )  <_  N  ->  ( N  e.  ZZ  ->  ( ch  ->  th )
) ) )
4140com23 78 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  ( N  e.  ZZ  ->  ( ( y  +  1 )  <_  N  ->  ( ch  ->  th )
) ) )
4241impd 254 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ( ch  ->  th )
) )
4342a2d 26 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  ( y  +  1 )  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  th ) ) )
4426, 43syld 45 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ  /\  M  <_  y )  ->  (
( ( N  e.  ZZ  /\  y  <_  N )  ->  ch )  ->  ( ( N  e.  ZZ  /\  (
y  +  1 )  <_  N )  ->  th ) ) )
454, 8, 12, 16, 18, 44uzind 9364 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  ->  (
( N  e.  ZZ  /\  K  <_  N )  ->  ta ) )
4645expcomd 1441 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta ) ) )
47463expb 1204 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( K  e.  ZZ  /\  M  <_  K )
)  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta )
) )
4847expcom 116 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K )  -> 
( M  e.  ZZ  ->  ( K  <_  N  ->  ( N  e.  ZZ  ->  ta ) ) ) )
4948com23 78 . . . 4  |-  ( ( K  e.  ZZ  /\  M  <_  K )  -> 
( K  <_  N  ->  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ta ) ) ) )
50493impia 1200 . . 3  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ta ) ) )
5150impd 254 . 2  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ta ) )
5251impcom 125 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   RRcr 7810   1c1 7812    + caddc 7814    < clt 7992    <_ cle 7993   ZZcz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254
This theorem is referenced by:  fnn0ind  9369  fzind2  10239
  Copyright terms: Public domain W3C validator