Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzind | Unicode version |
Description: Induction on the integers from to inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
fzind.1 | |
fzind.2 | |
fzind.3 | |
fzind.4 | |
fzind.5 | |
fzind.6 |
Ref | Expression |
---|---|
fzind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . . . . . . . . . . 11 | |
2 | 1 | anbi2d 460 | . . . . . . . . . 10 |
3 | fzind.1 | . . . . . . . . . 10 | |
4 | 2, 3 | imbi12d 233 | . . . . . . . . 9 |
5 | breq1 3985 | . . . . . . . . . . 11 | |
6 | 5 | anbi2d 460 | . . . . . . . . . 10 |
7 | fzind.2 | . . . . . . . . . 10 | |
8 | 6, 7 | imbi12d 233 | . . . . . . . . 9 |
9 | breq1 3985 | . . . . . . . . . . 11 | |
10 | 9 | anbi2d 460 | . . . . . . . . . 10 |
11 | fzind.3 | . . . . . . . . . 10 | |
12 | 10, 11 | imbi12d 233 | . . . . . . . . 9 |
13 | breq1 3985 | . . . . . . . . . . 11 | |
14 | 13 | anbi2d 460 | . . . . . . . . . 10 |
15 | fzind.4 | . . . . . . . . . 10 | |
16 | 14, 15 | imbi12d 233 | . . . . . . . . 9 |
17 | fzind.5 | . . . . . . . . . 10 | |
18 | 17 | 3expib 1196 | . . . . . . . . 9 |
19 | zre 9195 | . . . . . . . . . . . . . 14 | |
20 | zre 9195 | . . . . . . . . . . . . . 14 | |
21 | p1le 8744 | . . . . . . . . . . . . . . 15 | |
22 | 21 | 3expia 1195 | . . . . . . . . . . . . . 14 |
23 | 19, 20, 22 | syl2an 287 | . . . . . . . . . . . . 13 |
24 | 23 | imdistanda 445 | . . . . . . . . . . . 12 |
25 | 24 | imim1d 75 | . . . . . . . . . . 11 |
26 | 25 | 3ad2ant2 1009 | . . . . . . . . . 10 |
27 | zltp1le 9245 | . . . . . . . . . . . . . . . . . . . . . 22 | |
28 | 27 | adantlr 469 | . . . . . . . . . . . . . . . . . . . . 21 |
29 | 28 | expcom 115 | . . . . . . . . . . . . . . . . . . . 20 |
30 | 29 | pm5.32d 446 | . . . . . . . . . . . . . . . . . . 19 |
31 | 30 | adantl 275 | . . . . . . . . . . . . . . . . . 18 |
32 | fzind.6 | . . . . . . . . . . . . . . . . . . . . 21 | |
33 | 32 | expcom 115 | . . . . . . . . . . . . . . . . . . . 20 |
34 | 33 | 3expa 1193 | . . . . . . . . . . . . . . . . . . 19 |
35 | 34 | com12 30 | . . . . . . . . . . . . . . . . . 18 |
36 | 31, 35 | sylbird 169 | . . . . . . . . . . . . . . . . 17 |
37 | 36 | ex 114 | . . . . . . . . . . . . . . . 16 |
38 | 37 | com23 78 | . . . . . . . . . . . . . . 15 |
39 | 38 | expd 256 | . . . . . . . . . . . . . 14 |
40 | 39 | 3impib 1191 | . . . . . . . . . . . . 13 |
41 | 40 | com23 78 | . . . . . . . . . . . 12 |
42 | 41 | impd 252 | . . . . . . . . . . 11 |
43 | 42 | a2d 26 | . . . . . . . . . 10 |
44 | 26, 43 | syld 45 | . . . . . . . . 9 |
45 | 4, 8, 12, 16, 18, 44 | uzind 9302 | . . . . . . . 8 |
46 | 45 | expcomd 1429 | . . . . . . 7 |
47 | 46 | 3expb 1194 | . . . . . 6 |
48 | 47 | expcom 115 | . . . . 5 |
49 | 48 | com23 78 | . . . 4 |
50 | 49 | 3impia 1190 | . . 3 |
51 | 50 | impd 252 | . 2 |
52 | 51 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 c1 7754 caddc 7756 clt 7933 cle 7934 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: fnn0ind 9307 fzind2 10174 |
Copyright terms: Public domain | W3C validator |