ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemshrink Unicode version

Theorem exbtwnzlemshrink 10428
Description: Lemma for exbtwnzlemex 10429. Shrinking the range around  A. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemshrink.j  |-  ( ph  ->  J  e.  NN )
exbtwnzlemshrink.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemshrink.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemshrink  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
Distinct variable groups:    A, m, n   
x, A, m    m, J    ph, m, n
Allowed substitution hints:    ph( x)    J( x, n)

Proof of Theorem exbtwnzlemshrink
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemshrink.j . . 3  |-  ( ph  ->  J  e.  NN )
21adantr 276 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) )  ->  J  e.  NN )
3 oveq2 5975 . . . . . . . 8  |-  ( w  =  1  ->  (
m  +  w )  =  ( m  + 
1 ) )
43breq2d 4071 . . . . . . 7  |-  ( w  =  1  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  1 ) ) )
54anbi2d 464 . . . . . 6  |-  ( w  =  1  ->  (
( m  <_  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  1 ) ) ) )
65rexbidv 2509 . . . . 5  |-  ( w  =  1  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  1 ) ) ) )
76anbi2d 464 . . . 4  |-  ( w  =  1  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  w ) ) )  <->  ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  + 
1 ) ) ) ) )
87imbi1d 231 . . 3  |-  ( w  =  1  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  <-> 
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  + 
1 ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
9 oveq2 5975 . . . . . . . 8  |-  ( w  =  k  ->  (
m  +  w )  =  ( m  +  k ) )
109breq2d 4071 . . . . . . 7  |-  ( w  =  k  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  k ) ) )
1110anbi2d 464 . . . . . 6  |-  ( w  =  k  ->  (
( m  <_  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  k ) ) ) )
1211rexbidv 2509 . . . . 5  |-  ( w  =  k  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  k ) ) ) )
1312anbi2d 464 . . . 4  |-  ( w  =  k  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  w ) ) )  <->  ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  k ) ) ) ) )
1413imbi1d 231 . . 3  |-  ( w  =  k  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  <-> 
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
15 oveq2 5975 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
m  +  w )  =  ( m  +  ( k  +  1 ) ) )
1615breq2d 4071 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  ( k  +  1 ) ) ) )
1716anbi2d 464 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( m  <_  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1817rexbidv 2509 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( k  +  1 ) ) ) ) )
1918anbi2d 464 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  w ) ) )  <->  ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) ) )
2019imbi1d 231 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  <-> 
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
21 oveq2 5975 . . . . . . . 8  |-  ( w  =  J  ->  (
m  +  w )  =  ( m  +  J ) )
2221breq2d 4071 . . . . . . 7  |-  ( w  =  J  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  J ) ) )
2322anbi2d 464 . . . . . 6  |-  ( w  =  J  ->  (
( m  <_  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  J ) ) ) )
2423rexbidv 2509 . . . . 5  |-  ( w  =  J  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) ) )
2524anbi2d 464 . . . 4  |-  ( w  =  J  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  w ) ) )  <->  ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  J ) ) ) ) )
2625imbi1d 231 . . 3  |-  ( w  =  J  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  <-> 
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
27 breq1 4062 . . . . . . 7  |-  ( m  =  x  ->  (
m  <_  A  <->  x  <_  A ) )
28 oveq1 5974 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  1 )  =  ( x  + 
1 ) )
2928breq2d 4071 . . . . . . 7  |-  ( m  =  x  ->  ( A  <  ( m  + 
1 )  <->  A  <  ( x  +  1 ) ) )
3027, 29anbi12d 473 . . . . . 6  |-  ( m  =  x  ->  (
( m  <_  A  /\  A  <  ( m  +  1 ) )  <-> 
( x  <_  A  /\  A  <  ( x  +  1 ) ) ) )
3130cbvrexv 2743 . . . . 5  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  + 
1 ) )  <->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
3231biimpi 120 . . . 4  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  + 
1 ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
3332adantl 277 . . 3  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  1 ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
34 simpl 109 . . . . . . 7  |-  ( ( k  e.  NN  /\  ph )  ->  k  e.  NN )
35 exbtwnzlemshrink.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3635adantl 277 . . . . . . 7  |-  ( ( k  e.  NN  /\  ph )  ->  A  e.  RR )
37 exbtwnzlemshrink.tri . . . . . . . 8  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
3837adantll 476 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  n  e.  ZZ )  ->  (
n  <_  A  \/  A  <  n ) )
3934, 36, 38exbtwnzlemstep 10427 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  k ) ) )
4039ex 115 . . . . 5  |-  ( ( k  e.  NN  /\  ph )  ->  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  k ) ) ) )
4140imdistanda 448 . . . 4  |-  ( k  e.  NN  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( k  +  1 ) ) ) )  ->  ( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  k ) ) ) ) )
4241imim1d 75 . . 3  |-  ( k  e.  NN  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  ->  ( ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
438, 14, 20, 26, 33, 42nnind 9087 . 2  |-  ( J  e.  NN  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
442, 43mpcom 36 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   RRcr 7959   1c1 7961    + caddc 7963    < clt 8142    <_ cle 8143   NNcn 9071   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408
This theorem is referenced by:  exbtwnzlemex  10429
  Copyright terms: Public domain W3C validator