ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemshrink Unicode version

Theorem exbtwnzlemshrink 10205
Description: Lemma for exbtwnzlemex 10206. Shrinking the range around  A. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemshrink.j  |-  ( ph  ->  J  e.  NN )
exbtwnzlemshrink.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemshrink.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemshrink  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
Distinct variable groups:    A, m, n   
x, A, m    m, J    ph, m, n
Allowed substitution hints:    ph( x)    J( x, n)

Proof of Theorem exbtwnzlemshrink
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemshrink.j . . 3  |-  ( ph  ->  J  e.  NN )
21adantr 274 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) )  ->  J  e.  NN )
3 oveq2 5861 . . . . . . . 8  |-  ( w  =  1  ->  (
m  +  w )  =  ( m  + 
1 ) )
43breq2d 4001 . . . . . . 7  |-  ( w  =  1  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  1 ) ) )
54anbi2d 461 . . . . . 6  |-  ( w  =  1  ->  (
( m  <_  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  1 ) ) ) )
65rexbidv 2471 . . . . 5  |-  ( w  =  1  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  1 ) ) ) )
76anbi2d 461 . . . 4  |-  ( w  =  1  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  w ) ) )  <->  ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  + 
1 ) ) ) ) )
87imbi1d 230 . . 3  |-  ( w  =  1  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  <-> 
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  + 
1 ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
9 oveq2 5861 . . . . . . . 8  |-  ( w  =  k  ->  (
m  +  w )  =  ( m  +  k ) )
109breq2d 4001 . . . . . . 7  |-  ( w  =  k  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  k ) ) )
1110anbi2d 461 . . . . . 6  |-  ( w  =  k  ->  (
( m  <_  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  k ) ) ) )
1211rexbidv 2471 . . . . 5  |-  ( w  =  k  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  k ) ) ) )
1312anbi2d 461 . . . 4  |-  ( w  =  k  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  w ) ) )  <->  ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  k ) ) ) ) )
1413imbi1d 230 . . 3  |-  ( w  =  k  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  <-> 
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
15 oveq2 5861 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
m  +  w )  =  ( m  +  ( k  +  1 ) ) )
1615breq2d 4001 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  ( k  +  1 ) ) ) )
1716anbi2d 461 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( m  <_  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1817rexbidv 2471 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( k  +  1 ) ) ) ) )
1918anbi2d 461 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  w ) ) )  <->  ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) ) )
2019imbi1d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  <-> 
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
21 oveq2 5861 . . . . . . . 8  |-  ( w  =  J  ->  (
m  +  w )  =  ( m  +  J ) )
2221breq2d 4001 . . . . . . 7  |-  ( w  =  J  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  J ) ) )
2322anbi2d 461 . . . . . 6  |-  ( w  =  J  ->  (
( m  <_  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  J ) ) ) )
2423rexbidv 2471 . . . . 5  |-  ( w  =  J  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) ) )
2524anbi2d 461 . . . 4  |-  ( w  =  J  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  w ) ) )  <->  ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  J ) ) ) ) )
2625imbi1d 230 . . 3  |-  ( w  =  J  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  <-> 
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
27 breq1 3992 . . . . . . 7  |-  ( m  =  x  ->  (
m  <_  A  <->  x  <_  A ) )
28 oveq1 5860 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  1 )  =  ( x  + 
1 ) )
2928breq2d 4001 . . . . . . 7  |-  ( m  =  x  ->  ( A  <  ( m  + 
1 )  <->  A  <  ( x  +  1 ) ) )
3027, 29anbi12d 470 . . . . . 6  |-  ( m  =  x  ->  (
( m  <_  A  /\  A  <  ( m  +  1 ) )  <-> 
( x  <_  A  /\  A  <  ( x  +  1 ) ) ) )
3130cbvrexv 2697 . . . . 5  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  + 
1 ) )  <->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
3231biimpi 119 . . . 4  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  + 
1 ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
3332adantl 275 . . 3  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  1 ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
34 simpl 108 . . . . . . 7  |-  ( ( k  e.  NN  /\  ph )  ->  k  e.  NN )
35 exbtwnzlemshrink.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3635adantl 275 . . . . . . 7  |-  ( ( k  e.  NN  /\  ph )  ->  A  e.  RR )
37 exbtwnzlemshrink.tri . . . . . . . 8  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
3837adantll 473 . . . . . . 7  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  n  e.  ZZ )  ->  (
n  <_  A  \/  A  <  n ) )
3934, 36, 38exbtwnzlemstep 10204 . . . . . 6  |-  ( ( ( k  e.  NN  /\ 
ph )  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  k ) ) )
4039ex 114 . . . . 5  |-  ( ( k  e.  NN  /\  ph )  ->  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  k ) ) ) )
4140imdistanda 446 . . . 4  |-  ( k  e.  NN  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( k  +  1 ) ) ) )  ->  ( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  k ) ) ) ) )
4241imim1d 75 . . 3  |-  ( k  e.  NN  ->  (
( ( ph  /\  E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  ->  ( ( ph  /\ 
E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) ) )
438, 14, 20, 26, 33, 42nnind 8894 . 2  |-  ( J  e.  NN  ->  (
( ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
442, 43mpcom 36 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989  (class class class)co 5853   RRcr 7773   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955   NNcn 8878   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  exbtwnzlemex  10206
  Copyright terms: Public domain W3C validator