Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exbtwnzlemshrink | Unicode version |
Description: Lemma for exbtwnzlemex 10195. Shrinking the range around . (Contributed by Jim Kingdon, 10-May-2022.) |
Ref | Expression |
---|---|
exbtwnzlemshrink.j | |
exbtwnzlemshrink.a | |
exbtwnzlemshrink.tri |
Ref | Expression |
---|---|
exbtwnzlemshrink |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbtwnzlemshrink.j | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | oveq2 5859 | . . . . . . . 8 | |
4 | 3 | breq2d 3999 | . . . . . . 7 |
5 | 4 | anbi2d 461 | . . . . . 6 |
6 | 5 | rexbidv 2471 | . . . . 5 |
7 | 6 | anbi2d 461 | . . . 4 |
8 | 7 | imbi1d 230 | . . 3 |
9 | oveq2 5859 | . . . . . . . 8 | |
10 | 9 | breq2d 3999 | . . . . . . 7 |
11 | 10 | anbi2d 461 | . . . . . 6 |
12 | 11 | rexbidv 2471 | . . . . 5 |
13 | 12 | anbi2d 461 | . . . 4 |
14 | 13 | imbi1d 230 | . . 3 |
15 | oveq2 5859 | . . . . . . . 8 | |
16 | 15 | breq2d 3999 | . . . . . . 7 |
17 | 16 | anbi2d 461 | . . . . . 6 |
18 | 17 | rexbidv 2471 | . . . . 5 |
19 | 18 | anbi2d 461 | . . . 4 |
20 | 19 | imbi1d 230 | . . 3 |
21 | oveq2 5859 | . . . . . . . 8 | |
22 | 21 | breq2d 3999 | . . . . . . 7 |
23 | 22 | anbi2d 461 | . . . . . 6 |
24 | 23 | rexbidv 2471 | . . . . 5 |
25 | 24 | anbi2d 461 | . . . 4 |
26 | 25 | imbi1d 230 | . . 3 |
27 | breq1 3990 | . . . . . . 7 | |
28 | oveq1 5858 | . . . . . . . 8 | |
29 | 28 | breq2d 3999 | . . . . . . 7 |
30 | 27, 29 | anbi12d 470 | . . . . . 6 |
31 | 30 | cbvrexv 2697 | . . . . 5 |
32 | 31 | biimpi 119 | . . . 4 |
33 | 32 | adantl 275 | . . 3 |
34 | simpl 108 | . . . . . . 7 | |
35 | exbtwnzlemshrink.a | . . . . . . . 8 | |
36 | 35 | adantl 275 | . . . . . . 7 |
37 | exbtwnzlemshrink.tri | . . . . . . . 8 | |
38 | 37 | adantll 473 | . . . . . . 7 |
39 | 34, 36, 38 | exbtwnzlemstep 10193 | . . . . . 6 |
40 | 39 | ex 114 | . . . . 5 |
41 | 40 | imdistanda 446 | . . . 4 |
42 | 41 | imim1d 75 | . . 3 |
43 | 8, 14, 20, 26, 33, 42 | nnind 8883 | . 2 |
44 | 2, 43 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3987 (class class class)co 5851 cr 7762 c1 7764 caddc 7766 clt 7943 cle 7944 cn 8867 cz 9201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-addcom 7863 ax-addass 7865 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-0id 7871 ax-rnegex 7872 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-ltadd 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-inn 8868 df-n0 9125 df-z 9202 |
This theorem is referenced by: exbtwnzlemex 10195 |
Copyright terms: Public domain | W3C validator |