ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnntr Unicode version

Theorem cnntr 13728
Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnntr  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cnntr
StepHypRef Expression
1 cnf2 13708 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> Y )
213expia 1205 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  F : X
--> Y ) )
3 elpwi 3585 . . . . . . 7  |-  ( x  e.  ~P Y  ->  x  C_  Y )
43adantl 277 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_  Y )
5 toponuni 13518 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
65ad2antlr 489 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  Y  =  U. K )
74, 6sseqtrd 3194 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_ 
U. K )
8 eqid 2177 . . . . . . 7  |-  U. K  =  U. K
98cnntri 13727 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  x  C_  U. K )  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )
109expcom 116 . . . . 5  |-  ( x 
C_  U. K  ->  ( F  e.  ( J  Cn  K )  ->  ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
117, 10syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  ( F  e.  ( J  Cn  K )  ->  ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
1211ralrimdva 2557 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
132, 12jcad 307 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
14 toponss 13529 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  C_  Y )
15 velpw 3583 . . . . . . . . . 10  |-  ( x  e.  ~P Y  <->  x  C_  Y
)
1614, 15sylibr 134 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  e.  ~P Y )
1716ex 115 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  ( x  e.  K  ->  x  e. 
~P Y ) )
1817ad2antlr 489 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  K  ->  x  e.  ~P Y
) )
1918imim1d 75 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  (
x  e.  K  -> 
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
20 topontop 13517 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2120ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  J  e.  Top )
22 cnvimass 4992 . . . . . . . . . . 11  |-  ( `' F " x ) 
C_  dom  F
23 fdm 5372 . . . . . . . . . . . . 13  |-  ( F : X --> Y  ->  dom  F  =  X )
2423ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  dom  F  =  X )
25 toponuni 13518 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2625ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  X  =  U. J )
2724, 26eqtrd 2210 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  dom  F  = 
U. J )
2822, 27sseqtrid 3206 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( `' F " x )  C_  U. J )
29 eqid 2177 . . . . . . . . . . 11  |-  U. J  =  U. J
3029ntrss2 13624 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x ) )
3121, 28, 30syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( int `  J ) `  ( `' F " x ) )  C_  ( `' F " x ) )
32 eqss 3171 . . . . . . . . . 10  |-  ( ( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( (
( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x )  /\  ( `' F " x ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
3332baib 919 . . . . . . . . 9  |-  ( ( ( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x )  ->  (
( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( `' F " x )  C_  ( ( int `  J
) `  ( `' F " x ) ) ) )
3431, 33syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( (
( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( `' F " x )  C_  ( ( int `  J
) `  ( `' F " x ) ) ) )
3529isopn3 13628 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( `' F " x )  e.  J  <->  ( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x ) ) )
3621, 28, 35syl2anc 411 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " x )  e.  J  <->  ( ( int `  J ) `  ( `' F " x ) )  =  ( `' F " x ) ) )
37 topontop 13517 . . . . . . . . . . . 12  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
3837ad3antlr 493 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  K  e.  Top )
39 isopn3i 13638 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  x  e.  K )  ->  ( ( int `  K
) `  x )  =  x )
4038, 39sylancom 420 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( int `  K ) `  x )  =  x )
4140imaeq2d 4971 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( `' F " ( ( int `  K ) `  x
) )  =  ( `' F " x ) )
4241sseq1d 3185 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) )  <->  ( `' F " x )  C_  (
( int `  J
) `  ( `' F " x ) ) ) )
4334, 36, 423bitr4rd 221 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) )  <->  ( `' F " x )  e.  J
) )
4443pm5.74da 443 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  K  ->  ( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  <->  ( x  e.  K  ->  ( `' F " x )  e.  J ) ) )
4519, 44sylibd 149 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  (
x  e.  K  -> 
( `' F "
x )  e.  J
) ) )
4645ralimdv2 2547 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. x  e.  ~P  Y ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) )  ->  A. x  e.  K  ( `' F " x )  e.  J ) )
4746imdistanda 448 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  ( F : X --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
48 iscn 13700 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
4947, 48sylibrd 169 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  F  e.  ( J  Cn  K
) ) )
5013, 49impbid 129 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3130   ~Pcpw 3576   U.cuni 3810   `'ccnv 4626   dom cdm 4627   "cima 4630   -->wf 5213   ` cfv 5217  (class class class)co 5875   Topctop 13500  TopOnctopon 13513   intcnt 13596    Cn ccn 13688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-top 13501  df-topon 13514  df-ntr 13599  df-cn 13691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator