ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnntr Unicode version

Theorem cnntr 13019
Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnntr  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cnntr
StepHypRef Expression
1 cnf2 12999 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> Y )
213expia 1200 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  F : X
--> Y ) )
3 elpwi 3575 . . . . . . 7  |-  ( x  e.  ~P Y  ->  x  C_  Y )
43adantl 275 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_  Y )
5 toponuni 12807 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
65ad2antlr 486 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  Y  =  U. K )
74, 6sseqtrd 3185 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_ 
U. K )
8 eqid 2170 . . . . . . 7  |-  U. K  =  U. K
98cnntri 13018 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  x  C_  U. K )  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )
109expcom 115 . . . . 5  |-  ( x 
C_  U. K  ->  ( F  e.  ( J  Cn  K )  ->  ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
117, 10syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  ( F  e.  ( J  Cn  K )  ->  ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
1211ralrimdva 2550 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
132, 12jcad 305 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
14 toponss 12818 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  C_  Y )
15 velpw 3573 . . . . . . . . . 10  |-  ( x  e.  ~P Y  <->  x  C_  Y
)
1614, 15sylibr 133 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  e.  ~P Y )
1716ex 114 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  ( x  e.  K  ->  x  e. 
~P Y ) )
1817ad2antlr 486 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  K  ->  x  e.  ~P Y
) )
1918imim1d 75 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  (
x  e.  K  -> 
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
20 topontop 12806 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2120ad3antrrr 489 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  J  e.  Top )
22 cnvimass 4974 . . . . . . . . . . 11  |-  ( `' F " x ) 
C_  dom  F
23 fdm 5353 . . . . . . . . . . . . 13  |-  ( F : X --> Y  ->  dom  F  =  X )
2423ad2antlr 486 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  dom  F  =  X )
25 toponuni 12807 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2625ad3antrrr 489 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  X  =  U. J )
2724, 26eqtrd 2203 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  dom  F  = 
U. J )
2822, 27sseqtrid 3197 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( `' F " x )  C_  U. J )
29 eqid 2170 . . . . . . . . . . 11  |-  U. J  =  U. J
3029ntrss2 12915 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x ) )
3121, 28, 30syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( int `  J ) `  ( `' F " x ) )  C_  ( `' F " x ) )
32 eqss 3162 . . . . . . . . . 10  |-  ( ( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( (
( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x )  /\  ( `' F " x ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
3332baib 914 . . . . . . . . 9  |-  ( ( ( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x )  ->  (
( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( `' F " x )  C_  ( ( int `  J
) `  ( `' F " x ) ) ) )
3431, 33syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( (
( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( `' F " x )  C_  ( ( int `  J
) `  ( `' F " x ) ) ) )
3529isopn3 12919 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( `' F " x )  e.  J  <->  ( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x ) ) )
3621, 28, 35syl2anc 409 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " x )  e.  J  <->  ( ( int `  J ) `  ( `' F " x ) )  =  ( `' F " x ) ) )
37 topontop 12806 . . . . . . . . . . . 12  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
3837ad3antlr 490 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  K  e.  Top )
39 isopn3i 12929 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  x  e.  K )  ->  ( ( int `  K
) `  x )  =  x )
4038, 39sylancom 418 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( int `  K ) `  x )  =  x )
4140imaeq2d 4953 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( `' F " ( ( int `  K ) `  x
) )  =  ( `' F " x ) )
4241sseq1d 3176 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) )  <->  ( `' F " x )  C_  (
( int `  J
) `  ( `' F " x ) ) ) )
4334, 36, 423bitr4rd 220 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) )  <->  ( `' F " x )  e.  J
) )
4443pm5.74da 441 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  K  ->  ( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  <->  ( x  e.  K  ->  ( `' F " x )  e.  J ) ) )
4519, 44sylibd 148 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  (
x  e.  K  -> 
( `' F "
x )  e.  J
) ) )
4645ralimdv2 2540 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. x  e.  ~P  Y ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) )  ->  A. x  e.  K  ( `' F " x )  e.  J ) )
4746imdistanda 446 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  ( F : X --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
48 iscn 12991 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
4947, 48sylibrd 168 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  F  e.  ( J  Cn  K
) ) )
5013, 49impbid 128 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   ~Pcpw 3566   U.cuni 3796   `'ccnv 4610   dom cdm 4611   "cima 4614   -->wf 5194   ` cfv 5198  (class class class)co 5853   Topctop 12789  TopOnctopon 12802   intcnt 12887    Cn ccn 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-top 12790  df-topon 12803  df-ntr 12890  df-cn 12982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator