ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrvald Unicode version

Theorem dvdsrvald 14051
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
Assertion
Ref Expression
dvdsrvald  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
Distinct variable groups:    x, y,  .||    x, z, B, y    x, R, y, z    x,  .x. , y, z    ph, x, y, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 14047 . . 3  |-  ||r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  r
)  /\  E. z  e.  ( Base `  r
) ( z ( .r `  r ) x )  =  y ) } )
2 fveq2 5626 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
32eleq2d 2299 . . . . 5  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
4 fveq2 5626 . . . . . . . 8  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
54oveqd 6017 . . . . . . 7  |-  ( r  =  R  ->  (
z ( .r `  r ) x )  =  ( z ( .r `  R ) x ) )
65eqeq1d 2238 . . . . . 6  |-  ( r  =  R  ->  (
( z ( .r
`  r ) x )  =  y  <->  ( z
( .r `  R
) x )  =  y ) )
72, 6rexeqbidv 2745 . . . . 5  |-  ( r  =  R  ->  ( E. z  e.  ( Base `  r ) ( z ( .r `  r ) x )  =  y  <->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
83, 7anbi12d 473 . . . 4  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  E. z  e.  (
Base `  r )
( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  (
Base `  R )  /\  E. z  e.  (
Base `  R )
( z ( .r
`  R ) x )  =  y ) ) )
98opabbidv 4149 . . 3  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  r )  /\  E. z  e.  ( Base `  r ) ( z ( .r `  r
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
10 dvdsrvald.r . . . 4  |-  ( ph  ->  R  e. SRing )
1110elexd 2813 . . 3  |-  ( ph  ->  R  e.  _V )
12 basfn 13086 . . . . . 6  |-  Base  Fn  _V
13 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1512, 11, 14sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
16 xpexg 4832 . . . . 5  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1715, 15, 16syl2anc 411 . . . 4  |-  ( ph  ->  ( ( Base `  R
)  X.  ( Base `  R ) )  e. 
_V )
18 simprr 531 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  =  y )
1910ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  R  e. SRing )
20 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  z  e.  (
Base `  R )
)
21 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  x  e.  (
Base `  R )
)
22 eqid 2229 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
23 eqid 2229 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
2422, 23srgcl 13928 . . . . . . . . . 10  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2519, 20, 21, 24syl3anc 1271 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  e.  (
Base `  R )
)
2618, 25eqeltrrd 2307 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  y  e.  (
Base `  R )
)
2726rexlimdvaa 2649 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y  ->  y  e.  ( Base `  R )
) )
2827imdistanda 448 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2928ssopab2dv 4366 . . . . 5  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  C_  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) } )
30 df-xp 4724 . . . . 5  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
3129, 30sseqtrrdi 3273 . . . 4  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  C_  (
( Base `  R )  X.  ( Base `  R
) ) )
3217, 31ssexd 4223 . . 3  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  e.  _V )
331, 9, 11, 32fvmptd3 5727 . 2  |-  ( ph  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
34 dvdsrvald.2 . 2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
35 dvdsrvald.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  R ) )
3635eleq2d 2299 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  R
) ) )
37 dvdsrvald.3 . . . . . . 7  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
3837oveqd 6017 . . . . . 6  |-  ( ph  ->  ( z  .x.  x
)  =  ( z ( .r `  R
) x ) )
3938eqeq1d 2238 . . . . 5  |-  ( ph  ->  ( ( z  .x.  x )  =  y  <-> 
( z ( .r
`  R ) x )  =  y ) )
4035, 39rexeqbidv 2745 . . . 4  |-  ( ph  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y ) )
4136, 40anbi12d 473 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) ) )
4241opabbidv 4149 . 2  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
4333, 34, 423eqtr4d 2272 1  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799   {copab 4143    X. cxp 4716    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Basecbs 13027   .rcmulr 13106  SRingcsrg 13921   ||rcdsr 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-srg 13922  df-dvdsr 14047
This theorem is referenced by:  dvdsrd  14052  dvdsrex  14056  dvdsrpropdg  14105  dvdsrzring  14561
  Copyright terms: Public domain W3C validator