ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrvald Unicode version

Theorem dvdsrvald 13826
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
Assertion
Ref Expression
dvdsrvald  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
Distinct variable groups:    x, y,  .||    x, z, B, y    x, R, y, z    x,  .x. , y, z    ph, x, y, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13822 . . 3  |-  ||r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  r
)  /\  E. z  e.  ( Base `  r
) ( z ( .r `  r ) x )  =  y ) } )
2 fveq2 5575 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
32eleq2d 2274 . . . . 5  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
4 fveq2 5575 . . . . . . . 8  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
54oveqd 5960 . . . . . . 7  |-  ( r  =  R  ->  (
z ( .r `  r ) x )  =  ( z ( .r `  R ) x ) )
65eqeq1d 2213 . . . . . 6  |-  ( r  =  R  ->  (
( z ( .r
`  r ) x )  =  y  <->  ( z
( .r `  R
) x )  =  y ) )
72, 6rexeqbidv 2718 . . . . 5  |-  ( r  =  R  ->  ( E. z  e.  ( Base `  r ) ( z ( .r `  r ) x )  =  y  <->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
83, 7anbi12d 473 . . . 4  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  E. z  e.  (
Base `  r )
( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  (
Base `  R )  /\  E. z  e.  (
Base `  R )
( z ( .r
`  R ) x )  =  y ) ) )
98opabbidv 4109 . . 3  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  r )  /\  E. z  e.  ( Base `  r ) ( z ( .r `  r
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
10 dvdsrvald.r . . . 4  |-  ( ph  ->  R  e. SRing )
1110elexd 2784 . . 3  |-  ( ph  ->  R  e.  _V )
12 basfn 12861 . . . . . 6  |-  Base  Fn  _V
13 funfvex 5592 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5375 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1512, 11, 14sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
16 xpexg 4788 . . . . 5  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1715, 15, 16syl2anc 411 . . . 4  |-  ( ph  ->  ( ( Base `  R
)  X.  ( Base `  R ) )  e. 
_V )
18 simprr 531 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  =  y )
1910ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  R  e. SRing )
20 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  z  e.  (
Base `  R )
)
21 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  x  e.  (
Base `  R )
)
22 eqid 2204 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
23 eqid 2204 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
2422, 23srgcl 13703 . . . . . . . . . 10  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2519, 20, 21, 24syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  e.  (
Base `  R )
)
2618, 25eqeltrrd 2282 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  y  e.  (
Base `  R )
)
2726rexlimdvaa 2623 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y  ->  y  e.  ( Base `  R )
) )
2827imdistanda 448 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2928ssopab2dv 4324 . . . . 5  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  C_  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) } )
30 df-xp 4680 . . . . 5  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
3129, 30sseqtrrdi 3241 . . . 4  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  C_  (
( Base `  R )  X.  ( Base `  R
) ) )
3217, 31ssexd 4183 . . 3  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  e.  _V )
331, 9, 11, 32fvmptd3 5672 . 2  |-  ( ph  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
34 dvdsrvald.2 . 2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
35 dvdsrvald.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  R ) )
3635eleq2d 2274 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  R
) ) )
37 dvdsrvald.3 . . . . . . 7  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
3837oveqd 5960 . . . . . 6  |-  ( ph  ->  ( z  .x.  x
)  =  ( z ( .r `  R
) x ) )
3938eqeq1d 2213 . . . . 5  |-  ( ph  ->  ( ( z  .x.  x )  =  y  <-> 
( z ( .r
`  R ) x )  =  y ) )
4035, 39rexeqbidv 2718 . . . 4  |-  ( ph  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y ) )
4136, 40anbi12d 473 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) ) )
4241opabbidv 4109 . 2  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
4333, 34, 423eqtr4d 2247 1  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   E.wrex 2484   _Vcvv 2771   {copab 4103    X. cxp 4672    Fn wfn 5265   ` cfv 5270  (class class class)co 5943   Basecbs 12803   .rcmulr 12881  SRingcsrg 13696   ||rcdsr 13819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-mgp 13654  df-srg 13697  df-dvdsr 13822
This theorem is referenced by:  dvdsrd  13827  dvdsrex  13831  dvdsrpropdg  13880  dvdsrzring  14336
  Copyright terms: Public domain W3C validator