ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrvald Unicode version

Theorem dvdsrvald 13589
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
Assertion
Ref Expression
dvdsrvald  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
Distinct variable groups:    x, y,  .||    x, z, B, y    x, R, y, z    x,  .x. , y, z    ph, x, y, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13585 . . 3  |-  ||r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  r
)  /\  E. z  e.  ( Base `  r
) ( z ( .r `  r ) x )  =  y ) } )
2 fveq2 5554 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
32eleq2d 2263 . . . . 5  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
4 fveq2 5554 . . . . . . . 8  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
54oveqd 5935 . . . . . . 7  |-  ( r  =  R  ->  (
z ( .r `  r ) x )  =  ( z ( .r `  R ) x ) )
65eqeq1d 2202 . . . . . 6  |-  ( r  =  R  ->  (
( z ( .r
`  r ) x )  =  y  <->  ( z
( .r `  R
) x )  =  y ) )
72, 6rexeqbidv 2707 . . . . 5  |-  ( r  =  R  ->  ( E. z  e.  ( Base `  r ) ( z ( .r `  r ) x )  =  y  <->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
83, 7anbi12d 473 . . . 4  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  E. z  e.  (
Base `  r )
( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  (
Base `  R )  /\  E. z  e.  (
Base `  R )
( z ( .r
`  R ) x )  =  y ) ) )
98opabbidv 4095 . . 3  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  r )  /\  E. z  e.  ( Base `  r ) ( z ( .r `  r
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
10 dvdsrvald.r . . . 4  |-  ( ph  ->  R  e. SRing )
1110elexd 2773 . . 3  |-  ( ph  ->  R  e.  _V )
12 basfn 12676 . . . . . 6  |-  Base  Fn  _V
13 funfvex 5571 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5354 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1512, 11, 14sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
16 xpexg 4773 . . . . 5  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1715, 15, 16syl2anc 411 . . . 4  |-  ( ph  ->  ( ( Base `  R
)  X.  ( Base `  R ) )  e. 
_V )
18 simprr 531 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  =  y )
1910ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  R  e. SRing )
20 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  z  e.  (
Base `  R )
)
21 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  x  e.  (
Base `  R )
)
22 eqid 2193 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
23 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
2422, 23srgcl 13466 . . . . . . . . . 10  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2519, 20, 21, 24syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  e.  (
Base `  R )
)
2618, 25eqeltrrd 2271 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  y  e.  (
Base `  R )
)
2726rexlimdvaa 2612 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y  ->  y  e.  ( Base `  R )
) )
2827imdistanda 448 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2928ssopab2dv 4309 . . . . 5  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  C_  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) } )
30 df-xp 4665 . . . . 5  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
3129, 30sseqtrrdi 3228 . . . 4  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  C_  (
( Base `  R )  X.  ( Base `  R
) ) )
3217, 31ssexd 4169 . . 3  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) }  e.  _V )
331, 9, 11, 32fvmptd3 5651 . 2  |-  ( ph  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
34 dvdsrvald.2 . 2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
35 dvdsrvald.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  R ) )
3635eleq2d 2263 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  R
) ) )
37 dvdsrvald.3 . . . . . . 7  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
3837oveqd 5935 . . . . . 6  |-  ( ph  ->  ( z  .x.  x
)  =  ( z ( .r `  R
) x ) )
3938eqeq1d 2202 . . . . 5  |-  ( ph  ->  ( ( z  .x.  x )  =  y  <-> 
( z ( .r
`  R ) x )  =  y ) )
4035, 39rexeqbidv 2707 . . . 4  |-  ( ph  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y ) )
4136, 40anbi12d 473 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) ) )
4241opabbidv 4095 . 2  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
4333, 34, 423eqtr4d 2236 1  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473   _Vcvv 2760   {copab 4089    X. cxp 4657    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   .rcmulr 12696  SRingcsrg 13459   ||rcdsr 13582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-srg 13460  df-dvdsr 13585
This theorem is referenced by:  dvdsrd  13590  dvdsrex  13594  dvdsrpropdg  13643  dvdsrzring  14091
  Copyright terms: Public domain W3C validator