ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrex Unicode version

Theorem dvdsrex 14047
Description: Existence of the divisibility relation. (Contributed by Jim Kingdon, 28-Jan-2025.)
Assertion
Ref Expression
dvdsrex  |-  ( R  e. SRing  ->  ( ||r `
 R )  e. 
_V )

Proof of Theorem dvdsrex
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2230 . . 3  |-  ( R  e. SRing  ->  ( Base `  R
)  =  ( Base `  R ) )
2 eqidd 2230 . . 3  |-  ( R  e. SRing  ->  ( ||r `
 R )  =  ( ||r `
 R ) )
3 id 19 . . 3  |-  ( R  e. SRing  ->  R  e. SRing )
4 eqidd 2230 . . 3  |-  ( R  e. SRing  ->  ( .r `  R )  =  ( .r `  R ) )
51, 2, 3, 4dvdsrvald 14042 . 2  |-  ( R  e. SRing  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
6 basfn 13077 . . . . 5  |-  Base  Fn  _V
7 elex 2811 . . . . 5  |-  ( R  e. SRing  ->  R  e.  _V )
8 funfvex 5640 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5419 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
106, 7, 9sylancr 414 . . . 4  |-  ( R  e. SRing  ->  ( Base `  R
)  e.  _V )
11 xpexg 4830 . . . 4  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1210, 10, 11syl2anc 411 . . 3  |-  ( R  e. SRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
13 simprr 531 . . . . . . . 8  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  =  y )
14 simpll 527 . . . . . . . . 9  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  R  e. SRing )
15 simprl 529 . . . . . . . . 9  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  z  e.  (
Base `  R )
)
16 simplr 528 . . . . . . . . 9  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  x  e.  (
Base `  R )
)
17 eqid 2229 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
18 eqid 2229 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
1917, 18srgcl 13919 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2014, 15, 16, 19syl3anc 1271 . . . . . . . 8  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  e.  (
Base `  R )
)
2113, 20eqeltrrd 2307 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  y  e.  (
Base `  R )
)
2221rexlimdvaa 2649 . . . . . 6  |-  ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y  ->  y  e.  ( Base `  R
) ) )
2322imdistanda 448 . . . . 5  |-  ( R  e. SRing  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2423ssopab2dv 4366 . . . 4  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  {
<. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) } )
25 df-xp 4722 . . . 4  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
2624, 25sseqtrrdi 3273 . . 3  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
2712, 26ssexd 4223 . 2  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  e.  _V )
285, 27eqeltrd 2306 1  |-  ( R  e. SRing  ->  ( ||r `
 R )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799   {copab 4143    X. cxp 4714    Fn wfn 5309   ` cfv 5314  (class class class)co 5994   Basecbs 13018   .rcmulr 13097  SRingcsrg 13912   ||rcdsr 14035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-mgp 13870  df-srg 13913  df-dvdsr 14038
This theorem is referenced by:  isunitd  14055
  Copyright terms: Public domain W3C validator