ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrex Unicode version

Theorem dvdsrex 13910
Description: Existence of the divisibility relation. (Contributed by Jim Kingdon, 28-Jan-2025.)
Assertion
Ref Expression
dvdsrex  |-  ( R  e. SRing  ->  ( ||r `
 R )  e. 
_V )

Proof of Theorem dvdsrex
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2207 . . 3  |-  ( R  e. SRing  ->  ( Base `  R
)  =  ( Base `  R ) )
2 eqidd 2207 . . 3  |-  ( R  e. SRing  ->  ( ||r `
 R )  =  ( ||r `
 R ) )
3 id 19 . . 3  |-  ( R  e. SRing  ->  R  e. SRing )
4 eqidd 2207 . . 3  |-  ( R  e. SRing  ->  ( .r `  R )  =  ( .r `  R ) )
51, 2, 3, 4dvdsrvald 13905 . 2  |-  ( R  e. SRing  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
6 basfn 12940 . . . . 5  |-  Base  Fn  _V
7 elex 2785 . . . . 5  |-  ( R  e. SRing  ->  R  e.  _V )
8 funfvex 5603 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5382 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
106, 7, 9sylancr 414 . . . 4  |-  ( R  e. SRing  ->  ( Base `  R
)  e.  _V )
11 xpexg 4794 . . . 4  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1210, 10, 11syl2anc 411 . . 3  |-  ( R  e. SRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
13 simprr 531 . . . . . . . 8  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  =  y )
14 simpll 527 . . . . . . . . 9  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  R  e. SRing )
15 simprl 529 . . . . . . . . 9  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  z  e.  (
Base `  R )
)
16 simplr 528 . . . . . . . . 9  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  x  e.  (
Base `  R )
)
17 eqid 2206 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
18 eqid 2206 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
1917, 18srgcl 13782 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2014, 15, 16, 19syl3anc 1250 . . . . . . . 8  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  ( z ( .r `  R ) x )  e.  (
Base `  R )
)
2113, 20eqeltrrd 2284 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  /\  (
z  e.  ( Base `  R )  /\  (
z ( .r `  R ) x )  =  y ) )  ->  y  e.  (
Base `  R )
)
2221rexlimdvaa 2625 . . . . . 6  |-  ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y  ->  y  e.  ( Base `  R
) ) )
2322imdistanda 448 . . . . 5  |-  ( R  e. SRing  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2423ssopab2dv 4330 . . . 4  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  {
<. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) } )
25 df-xp 4686 . . . 4  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
2624, 25sseqtrrdi 3244 . . 3  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
2712, 26ssexd 4189 . 2  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  e.  _V )
285, 27eqeltrd 2283 1  |-  ( R  e. SRing  ->  ( ||r `
 R )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E.wrex 2486   _Vcvv 2773   {copab 4109    X. cxp 4678    Fn wfn 5272   ` cfv 5277  (class class class)co 5954   Basecbs 12882   .rcmulr 12960  SRingcsrg 13775   ||rcdsr 13898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-mgp 13733  df-srg 13776  df-dvdsr 13901
This theorem is referenced by:  isunitd  13918
  Copyright terms: Public domain W3C validator