ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemshrink Unicode version

Theorem rebtwn2zlemshrink 10345
Description: Lemma for rebtwn2z 10346. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemshrink  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
Distinct variable groups:    A, m, x   
m, J
Allowed substitution hint:    J( x)

Proof of Theorem rebtwn2zlemshrink
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . 2  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  J  e.  (
ZZ>= `  2 ) )
2 3simpb 997 . 2  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  J ) ) ) )
3 oveq2 5931 . . . . . . . 8  |-  ( w  =  2  ->  (
m  +  w )  =  ( m  + 
2 ) )
43breq2d 4046 . . . . . . 7  |-  ( w  =  2  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  2 ) ) )
54anbi2d 464 . . . . . 6  |-  ( w  =  2  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  2 ) ) ) )
65rexbidv 2498 . . . . 5  |-  ( w  =  2  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  2 ) ) ) )
76anbi2d 464 . . . 4  |-  ( w  =  2  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  + 
2 ) ) ) ) )
87imbi1d 231 . . 3  |-  ( w  =  2  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
9 oveq2 5931 . . . . . . . 8  |-  ( w  =  k  ->  (
m  +  w )  =  ( m  +  k ) )
109breq2d 4046 . . . . . . 7  |-  ( w  =  k  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  k ) ) )
1110anbi2d 464 . . . . . 6  |-  ( w  =  k  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  k ) ) ) )
1211rexbidv 2498 . . . . 5  |-  ( w  =  k  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) ) )
1312anbi2d 464 . . . 4  |-  ( w  =  k  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) ) ) )
1413imbi1d 231 . . 3  |-  ( w  =  k  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
15 oveq2 5931 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
m  +  w )  =  ( m  +  ( k  +  1 ) ) )
1615breq2d 4046 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  ( k  +  1 ) ) ) )
1716anbi2d 464 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1817rexbidv 2498 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1918anbi2d 464 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) ) )
2019imbi1d 231 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
21 oveq2 5931 . . . . . . . 8  |-  ( w  =  J  ->  (
m  +  w )  =  ( m  +  J ) )
2221breq2d 4046 . . . . . . 7  |-  ( w  =  J  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  J ) ) )
2322anbi2d 464 . . . . . 6  |-  ( w  =  J  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  J ) ) ) )
2423rexbidv 2498 . . . . 5  |-  ( w  =  J  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  J ) ) ) )
2524anbi2d 464 . . . 4  |-  ( w  =  J  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  J ) ) ) ) )
2625imbi1d 231 . . 3  |-  ( w  =  J  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
27 breq1 4037 . . . . . . 7  |-  ( m  =  x  ->  (
m  <  A  <->  x  <  A ) )
28 oveq1 5930 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  2 )  =  ( x  + 
2 ) )
2928breq2d 4046 . . . . . . 7  |-  ( m  =  x  ->  ( A  <  ( m  + 
2 )  <->  A  <  ( x  +  2 ) ) )
3027, 29anbi12d 473 . . . . . 6  |-  ( m  =  x  ->  (
( m  <  A  /\  A  <  ( m  +  2 ) )  <-> 
( x  <  A  /\  A  <  ( x  +  2 ) ) ) )
3130cbvrexv 2730 . . . . 5  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) )  <->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )
3231biimpi 120 . . . 4  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
3332adantl 277 . . 3  |-  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
34 rebtwn2zlemstep 10344 . . . . . 6  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) )
35343expia 1207 . . . . 5  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) )  ->  E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) ) )
3635imdistanda 448 . . . 4  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) ) ) )
3736imim1d 75 . . 3  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
388, 14, 20, 26, 33, 37uzind4i 9668 . 2  |-  ( J  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) )
391, 2, 38sylc 62 1  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   RRcr 7880   1c1 7882    + caddc 7884    < clt 8063   2c2 9043   ZZcz 9328   ZZ>=cuz 9603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-2 9051  df-n0 9252  df-z 9329  df-uz 9604
This theorem is referenced by:  rebtwn2z  10346
  Copyright terms: Public domain W3C validator