ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemshrink Unicode version

Theorem rebtwn2zlemshrink 10256
Description: Lemma for rebtwn2z 10257. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemshrink  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
Distinct variable groups:    A, m, x   
m, J
Allowed substitution hint:    J( x)

Proof of Theorem rebtwn2zlemshrink
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 998 . 2  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  J  e.  (
ZZ>= `  2 ) )
2 3simpb 995 . 2  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  J ) ) ) )
3 oveq2 5885 . . . . . . . 8  |-  ( w  =  2  ->  (
m  +  w )  =  ( m  + 
2 ) )
43breq2d 4017 . . . . . . 7  |-  ( w  =  2  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  2 ) ) )
54anbi2d 464 . . . . . 6  |-  ( w  =  2  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  2 ) ) ) )
65rexbidv 2478 . . . . 5  |-  ( w  =  2  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  2 ) ) ) )
76anbi2d 464 . . . 4  |-  ( w  =  2  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  + 
2 ) ) ) ) )
87imbi1d 231 . . 3  |-  ( w  =  2  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
9 oveq2 5885 . . . . . . . 8  |-  ( w  =  k  ->  (
m  +  w )  =  ( m  +  k ) )
109breq2d 4017 . . . . . . 7  |-  ( w  =  k  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  k ) ) )
1110anbi2d 464 . . . . . 6  |-  ( w  =  k  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  k ) ) ) )
1211rexbidv 2478 . . . . 5  |-  ( w  =  k  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) ) )
1312anbi2d 464 . . . 4  |-  ( w  =  k  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) ) ) )
1413imbi1d 231 . . 3  |-  ( w  =  k  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
15 oveq2 5885 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
m  +  w )  =  ( m  +  ( k  +  1 ) ) )
1615breq2d 4017 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  ( k  +  1 ) ) ) )
1716anbi2d 464 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1817rexbidv 2478 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1918anbi2d 464 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) ) )
2019imbi1d 231 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
21 oveq2 5885 . . . . . . . 8  |-  ( w  =  J  ->  (
m  +  w )  =  ( m  +  J ) )
2221breq2d 4017 . . . . . . 7  |-  ( w  =  J  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  J ) ) )
2322anbi2d 464 . . . . . 6  |-  ( w  =  J  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  J ) ) ) )
2423rexbidv 2478 . . . . 5  |-  ( w  =  J  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  J ) ) ) )
2524anbi2d 464 . . . 4  |-  ( w  =  J  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  J ) ) ) ) )
2625imbi1d 231 . . 3  |-  ( w  =  J  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
27 breq1 4008 . . . . . . 7  |-  ( m  =  x  ->  (
m  <  A  <->  x  <  A ) )
28 oveq1 5884 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  2 )  =  ( x  + 
2 ) )
2928breq2d 4017 . . . . . . 7  |-  ( m  =  x  ->  ( A  <  ( m  + 
2 )  <->  A  <  ( x  +  2 ) ) )
3027, 29anbi12d 473 . . . . . 6  |-  ( m  =  x  ->  (
( m  <  A  /\  A  <  ( m  +  2 ) )  <-> 
( x  <  A  /\  A  <  ( x  +  2 ) ) ) )
3130cbvrexv 2706 . . . . 5  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) )  <->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )
3231biimpi 120 . . . 4  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
3332adantl 277 . . 3  |-  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
34 rebtwn2zlemstep 10255 . . . . . 6  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) )
35343expia 1205 . . . . 5  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) )  ->  E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) ) )
3635imdistanda 448 . . . 4  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) ) ) )
3736imim1d 75 . . 3  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
388, 14, 20, 26, 33, 37uzind4i 9594 . 2  |-  ( J  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) )
391, 2, 38sylc 62 1  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RRcr 7812   1c1 7814    + caddc 7816    < clt 7994   2c2 8972   ZZcz 9255   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  rebtwn2z  10257
  Copyright terms: Public domain W3C validator