| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rebtwn2zlemshrink | Unicode version | ||
| Description: Lemma for rebtwn2z 10346. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| Ref | Expression |
|---|---|
| rebtwn2zlemshrink |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 |
. 2
| |
| 2 | 3simpb 997 |
. 2
| |
| 3 | oveq2 5931 |
. . . . . . . 8
| |
| 4 | 3 | breq2d 4046 |
. . . . . . 7
|
| 5 | 4 | anbi2d 464 |
. . . . . 6
|
| 6 | 5 | rexbidv 2498 |
. . . . 5
|
| 7 | 6 | anbi2d 464 |
. . . 4
|
| 8 | 7 | imbi1d 231 |
. . 3
|
| 9 | oveq2 5931 |
. . . . . . . 8
| |
| 10 | 9 | breq2d 4046 |
. . . . . . 7
|
| 11 | 10 | anbi2d 464 |
. . . . . 6
|
| 12 | 11 | rexbidv 2498 |
. . . . 5
|
| 13 | 12 | anbi2d 464 |
. . . 4
|
| 14 | 13 | imbi1d 231 |
. . 3
|
| 15 | oveq2 5931 |
. . . . . . . 8
| |
| 16 | 15 | breq2d 4046 |
. . . . . . 7
|
| 17 | 16 | anbi2d 464 |
. . . . . 6
|
| 18 | 17 | rexbidv 2498 |
. . . . 5
|
| 19 | 18 | anbi2d 464 |
. . . 4
|
| 20 | 19 | imbi1d 231 |
. . 3
|
| 21 | oveq2 5931 |
. . . . . . . 8
| |
| 22 | 21 | breq2d 4046 |
. . . . . . 7
|
| 23 | 22 | anbi2d 464 |
. . . . . 6
|
| 24 | 23 | rexbidv 2498 |
. . . . 5
|
| 25 | 24 | anbi2d 464 |
. . . 4
|
| 26 | 25 | imbi1d 231 |
. . 3
|
| 27 | breq1 4037 |
. . . . . . 7
| |
| 28 | oveq1 5930 |
. . . . . . . 8
| |
| 29 | 28 | breq2d 4046 |
. . . . . . 7
|
| 30 | 27, 29 | anbi12d 473 |
. . . . . 6
|
| 31 | 30 | cbvrexv 2730 |
. . . . 5
|
| 32 | 31 | biimpi 120 |
. . . 4
|
| 33 | 32 | adantl 277 |
. . 3
|
| 34 | rebtwn2zlemstep 10344 |
. . . . . 6
| |
| 35 | 34 | 3expia 1207 |
. . . . 5
|
| 36 | 35 | imdistanda 448 |
. . . 4
|
| 37 | 36 | imim1d 75 |
. . 3
|
| 38 | 8, 14, 20, 26, 33, 37 | uzind4i 9668 |
. 2
|
| 39 | 1, 2, 38 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-inn 8993 df-2 9051 df-n0 9252 df-z 9329 df-uz 9604 |
| This theorem is referenced by: rebtwn2z 10346 |
| Copyright terms: Public domain | W3C validator |