ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzss Unicode version

Theorem uzss 9486
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
uzss  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )

Proof of Theorem uzss
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eluzle 9478 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
21adantr 274 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  M  <_  N )
3 eluzel2 9471 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
4 eluzelz 9475 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
53, 4jca 304 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
6 zletr 9240 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  N  /\  N  <_  k )  ->  M  <_  k
) )
763expa 1193 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( M  <_  N  /\  N  <_  k )  ->  M  <_  k ) )
85, 7sylan 281 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  N  /\  N  <_  k )  ->  M  <_  k
) )
92, 8mpand 426 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  M  <_  k ) )
109imdistanda 445 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ZZ  /\  N  <_  k )  -> 
( k  e.  ZZ  /\  M  <_  k )
) )
11 eluz1 9470 . . . 4  |-  ( N  e.  ZZ  ->  (
k  e.  ( ZZ>= `  N )  <->  ( k  e.  ZZ  /\  N  <_ 
k ) ) )
124, 11syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  <->  ( k  e.  ZZ  /\  N  <_  k ) ) )
13 eluz1 9470 . . . 4  |-  ( M  e.  ZZ  ->  (
k  e.  ( ZZ>= `  M )  <->  ( k  e.  ZZ  /\  M  <_ 
k ) ) )
143, 13syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  ( k  e.  ZZ  /\  M  <_  k ) ) )
1510, 12, 143imtr4d 202 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  ->  k  e.  ( ZZ>= `  M ) ) )
1615ssrdv 3148 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136    C_ wss 3116   class class class wbr 3982   ` cfv 5188    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltwlin 7866
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-neg 8072  df-z 9192  df-uz 9467
This theorem is referenced by:  uzin  9498  uznnssnn  9515  fzopth  9996  4fvwrd4  10075  fzouzsplit  10114  seq3feq2  10405  seq3split  10414  cau3lem  11056  isumsplit  11432  isumrpcl  11435  clim2prod  11480  isprm3  12050  pcfac  12280
  Copyright terms: Public domain W3C validator