ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzss Unicode version

Theorem uzss 9339
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
uzss  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )

Proof of Theorem uzss
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eluzle 9331 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
21adantr 274 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  M  <_  N )
3 eluzel2 9324 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
4 eluzelz 9328 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
53, 4jca 304 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
6 zletr 9096 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  N  /\  N  <_  k )  ->  M  <_  k
) )
763expa 1181 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( M  <_  N  /\  N  <_  k )  ->  M  <_  k ) )
85, 7sylan 281 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  N  /\  N  <_  k )  ->  M  <_  k
) )
92, 8mpand 425 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  M  <_  k ) )
109imdistanda 444 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ZZ  /\  N  <_  k )  -> 
( k  e.  ZZ  /\  M  <_  k )
) )
11 eluz1 9323 . . . 4  |-  ( N  e.  ZZ  ->  (
k  e.  ( ZZ>= `  N )  <->  ( k  e.  ZZ  /\  N  <_ 
k ) ) )
124, 11syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  <->  ( k  e.  ZZ  /\  N  <_  k ) ) )
13 eluz1 9323 . . . 4  |-  ( M  e.  ZZ  ->  (
k  e.  ( ZZ>= `  M )  <->  ( k  e.  ZZ  /\  M  <_ 
k ) ) )
143, 13syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  ( k  e.  ZZ  /\  M  <_  k ) ) )
1510, 12, 143imtr4d 202 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  ->  k  e.  ( ZZ>= `  M ) ) )
1615ssrdv 3098 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480    C_ wss 3066   class class class wbr 3924   ` cfv 5118    <_ cle 7794   ZZcz 9047   ZZ>=cuz 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltwlin 7726
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-neg 7929  df-z 9048  df-uz 9320
This theorem is referenced by:  uzin  9351  uznnssnn  9365  fzopth  9834  4fvwrd4  9910  fzouzsplit  9949  seq3feq2  10236  seq3split  10245  cau3lem  10879  isumsplit  11253  isumrpcl  11256  clim2prod  11301  isprm3  11788
  Copyright terms: Public domain W3C validator