| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldvdsrsrg | Unicode version | ||
| Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| reldvdsrsrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvdsr 13936 |
. . . . 5
| |
| 2 | fveq2 5594 |
. . . . . . . 8
| |
| 3 | 2 | eleq2d 2276 |
. . . . . . 7
|
| 4 | fveq2 5594 |
. . . . . . . . . 10
| |
| 5 | 4 | oveqd 5979 |
. . . . . . . . 9
|
| 6 | 5 | eqeq1d 2215 |
. . . . . . . 8
|
| 7 | 2, 6 | rexeqbidv 2720 |
. . . . . . 7
|
| 8 | 3, 7 | anbi12d 473 |
. . . . . 6
|
| 9 | 8 | opabbidv 4121 |
. . . . 5
|
| 10 | elex 2785 |
. . . . 5
| |
| 11 | basfn 12975 |
. . . . . . . 8
| |
| 12 | funfvex 5611 |
. . . . . . . . 9
| |
| 13 | 12 | funfni 5390 |
. . . . . . . 8
|
| 14 | 11, 10, 13 | sylancr 414 |
. . . . . . 7
|
| 15 | xpexg 4802 |
. . . . . . 7
| |
| 16 | 14, 14, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | simpr 110 |
. . . . . . . . . . 11
| |
| 18 | simplll 533 |
. . . . . . . . . . . 12
| |
| 19 | simplr 528 |
. . . . . . . . . . . 12
| |
| 20 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 21 | eqid 2206 |
. . . . . . . . . . . . 13
| |
| 22 | eqid 2206 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | srgcl 13817 |
. . . . . . . . . . . 12
|
| 24 | 18, 19, 20, 23 | syl3anc 1250 |
. . . . . . . . . . 11
|
| 25 | 17, 24 | eqeltrrd 2284 |
. . . . . . . . . 10
|
| 26 | 25 | rexlimdva2 2627 |
. . . . . . . . 9
|
| 27 | 26 | imdistanda 448 |
. . . . . . . 8
|
| 28 | 27 | ssopab2dv 4338 |
. . . . . . 7
|
| 29 | df-xp 4694 |
. . . . . . 7
| |
| 30 | 28, 29 | sseqtrrdi 3246 |
. . . . . 6
|
| 31 | 16, 30 | ssexd 4195 |
. . . . 5
|
| 32 | 1, 9, 10, 31 | fvmptd3 5691 |
. . . 4
|
| 33 | 32, 30 | eqsstrd 3233 |
. . 3
|
| 34 | xpss 4796 |
. . 3
| |
| 35 | 33, 34 | sstrdi 3209 |
. 2
|
| 36 | df-rel 4695 |
. 2
| |
| 37 | 35, 36 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-plusg 13007 df-mulr 13008 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-mgp 13768 df-srg 13811 df-dvdsr 13936 |
| This theorem is referenced by: dvdsrd 13941 isunitd 13953 subrgdvds 14082 |
| Copyright terms: Public domain | W3C validator |