ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsrsrg Unicode version

Theorem reldvdsrsrg 13939
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
Assertion
Ref Expression
reldvdsrsrg  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )

Proof of Theorem reldvdsrsrg
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13936 . . . . 5  |-  ||r  =  (
w  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  w
)  /\  E. z  e.  ( Base `  w
) ( z ( .r `  w ) x )  =  y ) } )
2 fveq2 5594 . . . . . . . 8  |-  ( w  =  R  ->  ( Base `  w )  =  ( Base `  R
) )
32eleq2d 2276 . . . . . . 7  |-  ( w  =  R  ->  (
x  e.  ( Base `  w )  <->  x  e.  ( Base `  R )
) )
4 fveq2 5594 . . . . . . . . . 10  |-  ( w  =  R  ->  ( .r `  w )  =  ( .r `  R
) )
54oveqd 5979 . . . . . . . . 9  |-  ( w  =  R  ->  (
z ( .r `  w ) x )  =  ( z ( .r `  R ) x ) )
65eqeq1d 2215 . . . . . . . 8  |-  ( w  =  R  ->  (
( z ( .r
`  w ) x )  =  y  <->  ( z
( .r `  R
) x )  =  y ) )
72, 6rexeqbidv 2720 . . . . . . 7  |-  ( w  =  R  ->  ( E. z  e.  ( Base `  w ) ( z ( .r `  w ) x )  =  y  <->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
83, 7anbi12d 473 . . . . . 6  |-  ( w  =  R  ->  (
( x  e.  (
Base `  w )  /\  E. z  e.  (
Base `  w )
( z ( .r
`  w ) x )  =  y )  <-> 
( x  e.  (
Base `  R )  /\  E. z  e.  (
Base `  R )
( z ( .r
`  R ) x )  =  y ) ) )
98opabbidv 4121 . . . . 5  |-  ( w  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
10 elex 2785 . . . . 5  |-  ( R  e. SRing  ->  R  e.  _V )
11 basfn 12975 . . . . . . . 8  |-  Base  Fn  _V
12 funfvex 5611 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1312funfni 5390 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1411, 10, 13sylancr 414 . . . . . . 7  |-  ( R  e. SRing  ->  ( Base `  R
)  e.  _V )
15 xpexg 4802 . . . . . . 7  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1614, 14, 15syl2anc 411 . . . . . 6  |-  ( R  e. SRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
17 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  (
z ( .r `  R ) x )  =  y )
18 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  R  e. SRing )
19 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  z  e.  ( Base `  R
) )
20 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  x  e.  ( Base `  R
) )
21 eqid 2206 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2206 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
2321, 22srgcl 13817 . . . . . . . . . . . 12  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2418, 19, 20, 23syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  (
z ( .r `  R ) x )  e.  ( Base `  R
) )
2517, 24eqeltrrd 2284 . . . . . . . . . 10  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  y  e.  ( Base `  R
) )
2625rexlimdva2 2627 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y  ->  y  e.  ( Base `  R
) ) )
2726imdistanda 448 . . . . . . . 8  |-  ( R  e. SRing  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2827ssopab2dv 4338 . . . . . . 7  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  {
<. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) } )
29 df-xp 4694 . . . . . . 7  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
3028, 29sseqtrrdi 3246 . . . . . 6  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
3116, 30ssexd 4195 . . . . 5  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  e.  _V )
321, 9, 10, 31fvmptd3 5691 . . . 4  |-  ( R  e. SRing  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
3332, 30eqsstrd 3233 . . 3  |-  ( R  e. SRing  ->  ( ||r `
 R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
34 xpss 4796 . . 3  |-  ( (
Base `  R )  X.  ( Base `  R
) )  C_  ( _V  X.  _V )
3533, 34sstrdi 3209 . 2  |-  ( R  e. SRing  ->  ( ||r `
 R )  C_  ( _V  X.  _V )
)
36 df-rel 4695 . 2  |-  ( Rel  ( ||r `
 R )  <->  ( ||r `  R
)  C_  ( _V  X.  _V ) )
3735, 36sylibr 134 1  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E.wrex 2486   _Vcvv 2773    C_ wss 3170   {copab 4115    X. cxp 4686   Rel wrel 4693    Fn wfn 5280   ` cfv 5285  (class class class)co 5962   Basecbs 12917   .rcmulr 12995  SRingcsrg 13810   ||rcdsr 13933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-mgp 13768  df-srg 13811  df-dvdsr 13936
This theorem is referenced by:  dvdsrd  13941  isunitd  13953  subrgdvds  14082
  Copyright terms: Public domain W3C validator