ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsrsrg Unicode version

Theorem reldvdsrsrg 13261
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
Assertion
Ref Expression
reldvdsrsrg  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )

Proof of Theorem reldvdsrsrg
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13258 . . . . 5  |-  ||r  =  (
w  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  w
)  /\  E. z  e.  ( Base `  w
) ( z ( .r `  w ) x )  =  y ) } )
2 fveq2 5516 . . . . . . . 8  |-  ( w  =  R  ->  ( Base `  w )  =  ( Base `  R
) )
32eleq2d 2247 . . . . . . 7  |-  ( w  =  R  ->  (
x  e.  ( Base `  w )  <->  x  e.  ( Base `  R )
) )
4 fveq2 5516 . . . . . . . . . 10  |-  ( w  =  R  ->  ( .r `  w )  =  ( .r `  R
) )
54oveqd 5892 . . . . . . . . 9  |-  ( w  =  R  ->  (
z ( .r `  w ) x )  =  ( z ( .r `  R ) x ) )
65eqeq1d 2186 . . . . . . . 8  |-  ( w  =  R  ->  (
( z ( .r
`  w ) x )  =  y  <->  ( z
( .r `  R
) x )  =  y ) )
72, 6rexeqbidv 2686 . . . . . . 7  |-  ( w  =  R  ->  ( E. z  e.  ( Base `  w ) ( z ( .r `  w ) x )  =  y  <->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
83, 7anbi12d 473 . . . . . 6  |-  ( w  =  R  ->  (
( x  e.  (
Base `  w )  /\  E. z  e.  (
Base `  w )
( z ( .r
`  w ) x )  =  y )  <-> 
( x  e.  (
Base `  R )  /\  E. z  e.  (
Base `  R )
( z ( .r
`  R ) x )  =  y ) ) )
98opabbidv 4070 . . . . 5  |-  ( w  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
10 elex 2749 . . . . 5  |-  ( R  e. SRing  ->  R  e.  _V )
11 basfn 12520 . . . . . . . 8  |-  Base  Fn  _V
12 funfvex 5533 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1312funfni 5317 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1411, 10, 13sylancr 414 . . . . . . 7  |-  ( R  e. SRing  ->  ( Base `  R
)  e.  _V )
15 xpexg 4741 . . . . . . 7  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1614, 14, 15syl2anc 411 . . . . . 6  |-  ( R  e. SRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
17 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  (
z ( .r `  R ) x )  =  y )
18 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  R  e. SRing )
19 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  z  e.  ( Base `  R
) )
20 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  x  e.  ( Base `  R
) )
21 eqid 2177 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2177 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
2321, 22srgcl 13153 . . . . . . . . . . . 12  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2418, 19, 20, 23syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  (
z ( .r `  R ) x )  e.  ( Base `  R
) )
2517, 24eqeltrrd 2255 . . . . . . . . . 10  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  y  e.  ( Base `  R
) )
2625rexlimdva2 2597 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y  ->  y  e.  ( Base `  R
) ) )
2726imdistanda 448 . . . . . . . 8  |-  ( R  e. SRing  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2827ssopab2dv 4279 . . . . . . 7  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  {
<. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) } )
29 df-xp 4633 . . . . . . 7  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
3028, 29sseqtrrdi 3205 . . . . . 6  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
3116, 30ssexd 4144 . . . . 5  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  e.  _V )
321, 9, 10, 31fvmptd3 5610 . . . 4  |-  ( R  e. SRing  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
3332, 30eqsstrd 3192 . . 3  |-  ( R  e. SRing  ->  ( ||r `
 R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
34 xpss 4735 . . 3  |-  ( (
Base `  R )  X.  ( Base `  R
) )  C_  ( _V  X.  _V )
3533, 34sstrdi 3168 . 2  |-  ( R  e. SRing  ->  ( ||r `
 R )  C_  ( _V  X.  _V )
)
36 df-rel 4634 . 2  |-  ( Rel  ( ||r `
 R )  <->  ( ||r `  R
)  C_  ( _V  X.  _V ) )
3735, 36sylibr 134 1  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456   _Vcvv 2738    C_ wss 3130   {copab 4064    X. cxp 4625   Rel wrel 4632    Fn wfn 5212   ` cfv 5217  (class class class)co 5875   Basecbs 12462   .rcmulr 12537  SRingcsrg 13146   ||rcdsr 13255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-mgp 13131  df-srg 13147  df-dvdsr 13258
This theorem is referenced by:  dvdsrd  13263  isunitd  13275  subrgdvds  13356
  Copyright terms: Public domain W3C validator