| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldvdsrsrg | Unicode version | ||
| Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| reldvdsrsrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvdsr 14047 |
. . . . 5
| |
| 2 | fveq2 5626 |
. . . . . . . 8
| |
| 3 | 2 | eleq2d 2299 |
. . . . . . 7
|
| 4 | fveq2 5626 |
. . . . . . . . . 10
| |
| 5 | 4 | oveqd 6017 |
. . . . . . . . 9
|
| 6 | 5 | eqeq1d 2238 |
. . . . . . . 8
|
| 7 | 2, 6 | rexeqbidv 2745 |
. . . . . . 7
|
| 8 | 3, 7 | anbi12d 473 |
. . . . . 6
|
| 9 | 8 | opabbidv 4149 |
. . . . 5
|
| 10 | elex 2811 |
. . . . 5
| |
| 11 | basfn 13086 |
. . . . . . . 8
| |
| 12 | funfvex 5643 |
. . . . . . . . 9
| |
| 13 | 12 | funfni 5422 |
. . . . . . . 8
|
| 14 | 11, 10, 13 | sylancr 414 |
. . . . . . 7
|
| 15 | xpexg 4832 |
. . . . . . 7
| |
| 16 | 14, 14, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | simpr 110 |
. . . . . . . . . . 11
| |
| 18 | simplll 533 |
. . . . . . . . . . . 12
| |
| 19 | simplr 528 |
. . . . . . . . . . . 12
| |
| 20 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 21 | eqid 2229 |
. . . . . . . . . . . . 13
| |
| 22 | eqid 2229 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | srgcl 13928 |
. . . . . . . . . . . 12
|
| 24 | 18, 19, 20, 23 | syl3anc 1271 |
. . . . . . . . . . 11
|
| 25 | 17, 24 | eqeltrrd 2307 |
. . . . . . . . . 10
|
| 26 | 25 | rexlimdva2 2651 |
. . . . . . . . 9
|
| 27 | 26 | imdistanda 448 |
. . . . . . . 8
|
| 28 | 27 | ssopab2dv 4366 |
. . . . . . 7
|
| 29 | df-xp 4724 |
. . . . . . 7
| |
| 30 | 28, 29 | sseqtrrdi 3273 |
. . . . . 6
|
| 31 | 16, 30 | ssexd 4223 |
. . . . 5
|
| 32 | 1, 9, 10, 31 | fvmptd3 5727 |
. . . 4
|
| 33 | 32, 30 | eqsstrd 3260 |
. . 3
|
| 34 | xpss 4826 |
. . 3
| |
| 35 | 33, 34 | sstrdi 3236 |
. 2
|
| 36 | df-rel 4725 |
. 2
| |
| 37 | 35, 36 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-mgp 13879 df-srg 13922 df-dvdsr 14047 |
| This theorem is referenced by: dvdsrd 14052 isunitd 14064 subrgdvds 14193 |
| Copyright terms: Public domain | W3C validator |