ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsrsrg Unicode version

Theorem reldvdsrsrg 13648
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
Assertion
Ref Expression
reldvdsrsrg  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )

Proof of Theorem reldvdsrsrg
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13645 . . . . 5  |-  ||r  =  (
w  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  w
)  /\  E. z  e.  ( Base `  w
) ( z ( .r `  w ) x )  =  y ) } )
2 fveq2 5558 . . . . . . . 8  |-  ( w  =  R  ->  ( Base `  w )  =  ( Base `  R
) )
32eleq2d 2266 . . . . . . 7  |-  ( w  =  R  ->  (
x  e.  ( Base `  w )  <->  x  e.  ( Base `  R )
) )
4 fveq2 5558 . . . . . . . . . 10  |-  ( w  =  R  ->  ( .r `  w )  =  ( .r `  R
) )
54oveqd 5939 . . . . . . . . 9  |-  ( w  =  R  ->  (
z ( .r `  w ) x )  =  ( z ( .r `  R ) x ) )
65eqeq1d 2205 . . . . . . . 8  |-  ( w  =  R  ->  (
( z ( .r
`  w ) x )  =  y  <->  ( z
( .r `  R
) x )  =  y ) )
72, 6rexeqbidv 2710 . . . . . . 7  |-  ( w  =  R  ->  ( E. z  e.  ( Base `  w ) ( z ( .r `  w ) x )  =  y  <->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
83, 7anbi12d 473 . . . . . 6  |-  ( w  =  R  ->  (
( x  e.  (
Base `  w )  /\  E. z  e.  (
Base `  w )
( z ( .r
`  w ) x )  =  y )  <-> 
( x  e.  (
Base `  R )  /\  E. z  e.  (
Base `  R )
( z ( .r
`  R ) x )  =  y ) ) )
98opabbidv 4099 . . . . 5  |-  ( w  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
10 elex 2774 . . . . 5  |-  ( R  e. SRing  ->  R  e.  _V )
11 basfn 12736 . . . . . . . 8  |-  Base  Fn  _V
12 funfvex 5575 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1312funfni 5358 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1411, 10, 13sylancr 414 . . . . . . 7  |-  ( R  e. SRing  ->  ( Base `  R
)  e.  _V )
15 xpexg 4777 . . . . . . 7  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1614, 14, 15syl2anc 411 . . . . . 6  |-  ( R  e. SRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
17 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  (
z ( .r `  R ) x )  =  y )
18 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  R  e. SRing )
19 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  z  e.  ( Base `  R
) )
20 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  x  e.  ( Base `  R
) )
21 eqid 2196 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2196 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
2321, 22srgcl 13526 . . . . . . . . . . . 12  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2418, 19, 20, 23syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  (
z ( .r `  R ) x )  e.  ( Base `  R
) )
2517, 24eqeltrrd 2274 . . . . . . . . . 10  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  y  e.  ( Base `  R
) )
2625rexlimdva2 2617 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y  ->  y  e.  ( Base `  R
) ) )
2726imdistanda 448 . . . . . . . 8  |-  ( R  e. SRing  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2827ssopab2dv 4313 . . . . . . 7  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  {
<. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) } )
29 df-xp 4669 . . . . . . 7  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
3028, 29sseqtrrdi 3232 . . . . . 6  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
3116, 30ssexd 4173 . . . . 5  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  e.  _V )
321, 9, 10, 31fvmptd3 5655 . . . 4  |-  ( R  e. SRing  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
3332, 30eqsstrd 3219 . . 3  |-  ( R  e. SRing  ->  ( ||r `
 R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
34 xpss 4771 . . 3  |-  ( (
Base `  R )  X.  ( Base `  R
) )  C_  ( _V  X.  _V )
3533, 34sstrdi 3195 . 2  |-  ( R  e. SRing  ->  ( ||r `
 R )  C_  ( _V  X.  _V )
)
36 df-rel 4670 . 2  |-  ( Rel  ( ||r `
 R )  <->  ( ||r `  R
)  C_  ( _V  X.  _V ) )
3735, 36sylibr 134 1  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   _Vcvv 2763    C_ wss 3157   {copab 4093    X. cxp 4661   Rel wrel 4668    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756  SRingcsrg 13519   ||rcdsr 13642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mgp 13477  df-srg 13520  df-dvdsr 13645
This theorem is referenced by:  dvdsrd  13650  isunitd  13662  subrgdvds  13791
  Copyright terms: Public domain W3C validator