ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsrsrg Unicode version

Theorem reldvdsrsrg 13854
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
Assertion
Ref Expression
reldvdsrsrg  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )

Proof of Theorem reldvdsrsrg
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13851 . . . . 5  |-  ||r  =  (
w  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  w
)  /\  E. z  e.  ( Base `  w
) ( z ( .r `  w ) x )  =  y ) } )
2 fveq2 5576 . . . . . . . 8  |-  ( w  =  R  ->  ( Base `  w )  =  ( Base `  R
) )
32eleq2d 2275 . . . . . . 7  |-  ( w  =  R  ->  (
x  e.  ( Base `  w )  <->  x  e.  ( Base `  R )
) )
4 fveq2 5576 . . . . . . . . . 10  |-  ( w  =  R  ->  ( .r `  w )  =  ( .r `  R
) )
54oveqd 5961 . . . . . . . . 9  |-  ( w  =  R  ->  (
z ( .r `  w ) x )  =  ( z ( .r `  R ) x ) )
65eqeq1d 2214 . . . . . . . 8  |-  ( w  =  R  ->  (
( z ( .r
`  w ) x )  =  y  <->  ( z
( .r `  R
) x )  =  y ) )
72, 6rexeqbidv 2719 . . . . . . 7  |-  ( w  =  R  ->  ( E. z  e.  ( Base `  w ) ( z ( .r `  w ) x )  =  y  <->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
83, 7anbi12d 473 . . . . . 6  |-  ( w  =  R  ->  (
( x  e.  (
Base `  w )  /\  E. z  e.  (
Base `  w )
( z ( .r
`  w ) x )  =  y )  <-> 
( x  e.  (
Base `  R )  /\  E. z  e.  (
Base `  R )
( z ( .r
`  R ) x )  =  y ) ) )
98opabbidv 4110 . . . . 5  |-  ( w  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
10 elex 2783 . . . . 5  |-  ( R  e. SRing  ->  R  e.  _V )
11 basfn 12890 . . . . . . . 8  |-  Base  Fn  _V
12 funfvex 5593 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1312funfni 5376 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1411, 10, 13sylancr 414 . . . . . . 7  |-  ( R  e. SRing  ->  ( Base `  R
)  e.  _V )
15 xpexg 4789 . . . . . . 7  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1614, 14, 15syl2anc 411 . . . . . 6  |-  ( R  e. SRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
17 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  (
z ( .r `  R ) x )  =  y )
18 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  R  e. SRing )
19 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  z  e.  ( Base `  R
) )
20 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  x  e.  ( Base `  R
) )
21 eqid 2205 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2205 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
2321, 22srgcl 13732 . . . . . . . . . . . 12  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) x )  e.  ( Base `  R
) )
2418, 19, 20, 23syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  (
z ( .r `  R ) x )  e.  ( Base `  R
) )
2517, 24eqeltrrd 2283 . . . . . . . . . 10  |-  ( ( ( ( R  e. SRing  /\  x  e.  ( Base `  R ) )  /\  z  e.  (
Base `  R )
)  /\  ( z
( .r `  R
) x )  =  y )  ->  y  e.  ( Base `  R
) )
2625rexlimdva2 2626 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  x  e.  ( Base `  R
) )  ->  ( E. z  e.  ( Base `  R ) ( z ( .r `  R ) x )  =  y  ->  y  e.  ( Base `  R
) ) )
2726imdistanda 448 . . . . . . . 8  |-  ( R  e. SRing  ->  ( ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y )  ->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2827ssopab2dv 4325 . . . . . . 7  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  {
<. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) } )
29 df-xp 4681 . . . . . . 7  |-  ( (
Base `  R )  X.  ( Base `  R
) )  =  { <. x ,  y >.  |  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) }
3028, 29sseqtrrdi 3242 . . . . . 6  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
3116, 30ssexd 4184 . . . . 5  |-  ( R  e. SRing  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) }  e.  _V )
321, 9, 10, 31fvmptd3 5673 . . . 4  |-  ( R  e. SRing  ->  ( ||r `
 R )  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) } )
3332, 30eqsstrd 3229 . . 3  |-  ( R  e. SRing  ->  ( ||r `
 R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
34 xpss 4783 . . 3  |-  ( (
Base `  R )  X.  ( Base `  R
) )  C_  ( _V  X.  _V )
3533, 34sstrdi 3205 . 2  |-  ( R  e. SRing  ->  ( ||r `
 R )  C_  ( _V  X.  _V )
)
36 df-rel 4682 . 2  |-  ( Rel  ( ||r `
 R )  <->  ( ||r `  R
)  C_  ( _V  X.  _V ) )
3735, 36sylibr 134 1  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   E.wrex 2485   _Vcvv 2772    C_ wss 3166   {copab 4104    X. cxp 4673   Rel wrel 4680    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   .rcmulr 12910  SRingcsrg 13725   ||rcdsr 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mgp 13683  df-srg 13726  df-dvdsr 13851
This theorem is referenced by:  dvdsrd  13856  isunitd  13868  subrgdvds  13997
  Copyright terms: Public domain W3C validator