ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inindi Unicode version

Theorem inindi 3421
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
Assertion
Ref Expression
inindi  |-  ( A  i^i  ( B  i^i  C ) )  =  ( ( A  i^i  B
)  i^i  ( A  i^i  C ) )

Proof of Theorem inindi
StepHypRef Expression
1 inidm 3413 . . 3  |-  ( A  i^i  A )  =  A
21ineq1i 3401 . 2  |-  ( ( A  i^i  A )  i^i  ( B  i^i  C ) )  =  ( A  i^i  ( B  i^i  C ) )
3 in4 3420 . 2  |-  ( ( A  i^i  A )  i^i  ( B  i^i  C ) )  =  ( ( A  i^i  B
)  i^i  ( A  i^i  C ) )
42, 3eqtr3i 2252 1  |-  ( A  i^i  ( B  i^i  C ) )  =  ( ( A  i^i  B
)  i^i  ( A  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  resindi  5020  offres  6280  bitsinv1  12473
  Copyright terms: Public domain W3C validator