ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in4 GIF version

Theorem in4 3349
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in4 ((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))

Proof of Theorem in4
StepHypRef Expression
1 in12 3344 . . 3 (𝐵 ∩ (𝐶𝐷)) = (𝐶 ∩ (𝐵𝐷))
21ineq2i 3331 . 2 (𝐴 ∩ (𝐵 ∩ (𝐶𝐷))) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐷)))
3 inass 3343 . 2 ((𝐴𝐵) ∩ (𝐶𝐷)) = (𝐴 ∩ (𝐵 ∩ (𝐶𝐷)))
4 inass 3343 . 2 ((𝐴𝐶) ∩ (𝐵𝐷)) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐷)))
52, 3, 43eqtr4i 2206 1 ((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cin 3126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133
This theorem is referenced by:  inindi  3350  inindir  3351
  Copyright terms: Public domain W3C validator