Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > in4 | GIF version |
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.) |
Ref | Expression |
---|---|
in4 | ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in12 3338 | . . 3 ⊢ (𝐵 ∩ (𝐶 ∩ 𝐷)) = (𝐶 ∩ (𝐵 ∩ 𝐷)) | |
2 | 1 | ineq2i 3325 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (𝐶 ∩ 𝐷))) = (𝐴 ∩ (𝐶 ∩ (𝐵 ∩ 𝐷))) |
3 | inass 3337 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = (𝐴 ∩ (𝐵 ∩ (𝐶 ∩ 𝐷))) | |
4 | inass 3337 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) = (𝐴 ∩ (𝐶 ∩ (𝐵 ∩ 𝐷))) | |
5 | 2, 3, 4 | 3eqtr4i 2201 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∩ cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 |
This theorem is referenced by: inindi 3344 inindir 3345 |
Copyright terms: Public domain | W3C validator |