Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > in4 | GIF version |
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.) |
Ref | Expression |
---|---|
in4 | ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in12 3344 | . . 3 ⊢ (𝐵 ∩ (𝐶 ∩ 𝐷)) = (𝐶 ∩ (𝐵 ∩ 𝐷)) | |
2 | 1 | ineq2i 3331 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (𝐶 ∩ 𝐷))) = (𝐴 ∩ (𝐶 ∩ (𝐵 ∩ 𝐷))) |
3 | inass 3343 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = (𝐴 ∩ (𝐵 ∩ (𝐶 ∩ 𝐷))) | |
4 | inass 3343 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) = (𝐴 ∩ (𝐶 ∩ (𝐵 ∩ 𝐷))) | |
5 | 2, 3, 4 | 3eqtr4i 2206 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∩ cin 3126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 |
This theorem is referenced by: inindi 3350 inindir 3351 |
Copyright terms: Public domain | W3C validator |