| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > int0el | GIF version | ||
| Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| int0el | ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 3890 | . 2 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 ⊆ ∅) | |
| 2 | 0ss 3490 | . . 3 ⊢ ∅ ⊆ ∩ 𝐴 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (∅ ∈ 𝐴 → ∅ ⊆ ∩ 𝐴) |
| 4 | 1, 3 | eqssd 3201 | 1 ⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3451 ∩ cint 3875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 df-int 3876 |
| This theorem is referenced by: intv 4204 inton 4429 |
| Copyright terms: Public domain | W3C validator |