Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intun | Unicode version |
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.) |
Ref | Expression |
---|---|
intun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1469 | . . . 4 | |
2 | elun 3263 | . . . . . . 7 | |
3 | 2 | imbi1i 237 | . . . . . 6 |
4 | jaob 700 | . . . . . 6 | |
5 | 3, 4 | bitri 183 | . . . . 5 |
6 | 5 | albii 1458 | . . . 4 |
7 | vex 2729 | . . . . . 6 | |
8 | 7 | elint 3830 | . . . . 5 |
9 | 7 | elint 3830 | . . . . 5 |
10 | 8, 9 | anbi12i 456 | . . . 4 |
11 | 1, 6, 10 | 3bitr4i 211 | . . 3 |
12 | 7 | elint 3830 | . . 3 |
13 | elin 3305 | . . 3 | |
14 | 11, 12, 13 | 3bitr4i 211 | . 2 |
15 | 14 | eqriv 2162 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wal 1341 wceq 1343 wcel 2136 cun 3114 cin 3115 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-int 3825 |
This theorem is referenced by: intunsn 3862 riinint 4865 |
Copyright terms: Public domain | W3C validator |