ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltmnf Unicode version

Theorem nltmnf 9790
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
nltmnf  |-  ( A  e.  RR*  ->  -.  A  < -oo )

Proof of Theorem nltmnf
StepHypRef Expression
1 mnfnre 8002 . . . . . . 7  |- -oo  e/  RR
21neli 2444 . . . . . 6  |-  -. -oo  e.  RR
32intnan 929 . . . . 5  |-  -.  ( A  e.  RR  /\ -oo  e.  RR )
43intnanr 930 . . . 4  |-  -.  (
( A  e.  RR  /\ -oo  e.  RR )  /\  A  <RR -oo )
5 pnfnemnf 8014 . . . . . 6  |- +oo  =/= -oo
65nesymi 2393 . . . . 5  |-  -. -oo  = +oo
76intnan 929 . . . 4  |-  -.  ( A  = -oo  /\ -oo  = +oo )
84, 7pm3.2ni 813 . . 3  |-  -.  (
( ( A  e.  RR  /\ -oo  e.  RR )  /\  A  <RR -oo )  \/  ( A  = -oo  /\ -oo  = +oo ) )
96intnan 929 . . . 4  |-  -.  ( A  e.  RR  /\ -oo  = +oo )
102intnan 929 . . . 4  |-  -.  ( A  = -oo  /\ -oo  e.  RR )
119, 10pm3.2ni 813 . . 3  |-  -.  (
( A  e.  RR  /\ -oo  = +oo )  \/  ( A  = -oo  /\ -oo  e.  RR ) )
128, 11pm3.2ni 813 . 2  |-  -.  (
( ( ( A  e.  RR  /\ -oo  e.  RR )  /\  A  <RR -oo )  \/  ( A  = -oo  /\ -oo  = +oo ) )  \/  ( ( A  e.  RR  /\ -oo  = +oo )  \/  ( A  = -oo  /\ -oo  e.  RR ) ) )
13 mnfxr 8016 . . 3  |- -oo  e.  RR*
14 ltxr 9777 . . 3  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A  < -oo  <->  ( ( ( ( A  e.  RR  /\ -oo  e.  RR )  /\  A  <RR -oo )  \/  ( A  = -oo  /\ -oo  = +oo ) )  \/  ( ( A  e.  RR  /\ -oo  = +oo )  \/  ( A  = -oo  /\ -oo  e.  RR ) ) ) ) )
1513, 14mpan2 425 . 2  |-  ( A  e.  RR*  ->  ( A  < -oo  <->  ( ( ( ( A  e.  RR  /\ -oo  e.  RR )  /\  A  <RR -oo )  \/  ( A  = -oo  /\ -oo  = +oo ) )  \/  ( ( A  e.  RR  /\ -oo  = +oo )  \/  ( A  = -oo  /\ -oo  e.  RR ) ) ) ) )
1612, 15mtbiri 675 1  |-  ( A  e.  RR*  ->  -.  A  < -oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   class class class wbr 4005   RRcr 7812    <RR cltrr 7817   +oocpnf 7991   -oocmnf 7992   RR*cxr 7993    < clt 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999
This theorem is referenced by:  mnfle  9794  xrltnsym  9795  xrlttr  9797  xrltso  9798  xltnegi  9837  xposdif  9884  qbtwnxr  10260  xrmaxiflemab  11257  xrmaxltsup  11268  xrbdtri  11286  blssioo  14084
  Copyright terms: Public domain W3C validator