| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltmnf | Unicode version | ||
| Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| nltmnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 8115 |
. . . . . . 7
| |
| 2 | 1 | neli 2473 |
. . . . . 6
|
| 3 | 2 | intnan 931 |
. . . . 5
|
| 4 | 3 | intnanr 932 |
. . . 4
|
| 5 | pnfnemnf 8127 |
. . . . . 6
| |
| 6 | 5 | nesymi 2422 |
. . . . 5
|
| 7 | 6 | intnan 931 |
. . . 4
|
| 8 | 4, 7 | pm3.2ni 815 |
. . 3
|
| 9 | 6 | intnan 931 |
. . . 4
|
| 10 | 2 | intnan 931 |
. . . 4
|
| 11 | 9, 10 | pm3.2ni 815 |
. . 3
|
| 12 | 8, 11 | pm3.2ni 815 |
. 2
|
| 13 | mnfxr 8129 |
. . 3
| |
| 14 | ltxr 9897 |
. . 3
| |
| 15 | 13, 14 | mpan2 425 |
. 2
|
| 16 | 12, 15 | mtbiri 677 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 |
| This theorem is referenced by: mnfle 9914 xrltnsym 9915 xrlttr 9917 xrltso 9918 xltnegi 9957 xposdif 10004 qbtwnxr 10400 xrmaxiflemab 11558 xrmaxltsup 11569 xrbdtri 11587 blssioo 15025 |
| Copyright terms: Public domain | W3C validator |