Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrltnr | Unicode version |
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrltnr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9733 | . 2 | |
2 | ltnr 7996 | . . 3 | |
3 | pnfnre 7961 | . . . . . . . . . 10 | |
4 | 3 | neli 2437 | . . . . . . . . 9 |
5 | 4 | intnan 924 | . . . . . . . 8 |
6 | 5 | intnanr 925 | . . . . . . 7 |
7 | pnfnemnf 7974 | . . . . . . . . 9 | |
8 | 7 | neii 2342 | . . . . . . . 8 |
9 | 8 | intnanr 925 | . . . . . . 7 |
10 | 6, 9 | pm3.2ni 808 | . . . . . 6 |
11 | 4 | intnanr 925 | . . . . . . 7 |
12 | 4 | intnan 924 | . . . . . . 7 |
13 | 11, 12 | pm3.2ni 808 | . . . . . 6 |
14 | 10, 13 | pm3.2ni 808 | . . . . 5 |
15 | pnfxr 7972 | . . . . . 6 | |
16 | ltxr 9732 | . . . . . 6 | |
17 | 15, 15, 16 | mp2an 424 | . . . . 5 |
18 | 14, 17 | mtbir 666 | . . . 4 |
19 | breq12 3994 | . . . . 5 | |
20 | 19 | anidms 395 | . . . 4 |
21 | 18, 20 | mtbiri 670 | . . 3 |
22 | mnfnre 7962 | . . . . . . . . . 10 | |
23 | 22 | neli 2437 | . . . . . . . . 9 |
24 | 23 | intnan 924 | . . . . . . . 8 |
25 | 24 | intnanr 925 | . . . . . . 7 |
26 | 7 | nesymi 2386 | . . . . . . . 8 |
27 | 26 | intnan 924 | . . . . . . 7 |
28 | 25, 27 | pm3.2ni 808 | . . . . . 6 |
29 | 23 | intnanr 925 | . . . . . . 7 |
30 | 23 | intnan 924 | . . . . . . 7 |
31 | 29, 30 | pm3.2ni 808 | . . . . . 6 |
32 | 28, 31 | pm3.2ni 808 | . . . . 5 |
33 | mnfxr 7976 | . . . . . 6 | |
34 | ltxr 9732 | . . . . . 6 | |
35 | 33, 33, 34 | mp2an 424 | . . . . 5 |
36 | 32, 35 | mtbir 666 | . . . 4 |
37 | breq12 3994 | . . . . 5 | |
38 | 37 | anidms 395 | . . . 4 |
39 | 36, 38 | mtbiri 670 | . . 3 |
40 | 2, 21, 39 | 3jaoi 1298 | . 2 |
41 | 1, 40 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3o 972 wceq 1348 wcel 2141 class class class wbr 3989 cr 7773 cltrr 7778 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 |
This theorem is referenced by: xrltnsym 9750 xrltso 9753 xrlttri3 9754 xrleid 9757 xrltne 9770 nltpnft 9771 ngtmnft 9774 xrrebnd 9776 xposdif 9839 lbioog 9870 ubioog 9871 xrmaxleim 11207 xrmaxiflemlub 11211 |
Copyright terms: Public domain | W3C validator |