ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltnr Unicode version

Theorem xrltnr 9668
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrltnr  |-  ( A  e.  RR*  ->  -.  A  <  A )

Proof of Theorem xrltnr
StepHypRef Expression
1 elxr 9665 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 ltnr 7937 . . 3  |-  ( A  e.  RR  ->  -.  A  <  A )
3 pnfnre 7902 . . . . . . . . . 10  |- +oo  e/  RR
43neli 2424 . . . . . . . . 9  |-  -. +oo  e.  RR
54intnan 915 . . . . . . . 8  |-  -.  ( +oo  e.  RR  /\ +oo  e.  RR )
65intnanr 916 . . . . . . 7  |-  -.  (
( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )
7 pnfnemnf 7915 . . . . . . . . 9  |- +oo  =/= -oo
87neii 2329 . . . . . . . 8  |-  -. +oo  = -oo
98intnanr 916 . . . . . . 7  |-  -.  ( +oo  = -oo  /\ +oo  = +oo )
106, 9pm3.2ni 803 . . . . . 6  |-  -.  (
( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo  <RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo )
)
114intnanr 916 . . . . . . 7  |-  -.  ( +oo  e.  RR  /\ +oo  = +oo )
124intnan 915 . . . . . . 7  |-  -.  ( +oo  = -oo  /\ +oo  e.  RR )
1311, 12pm3.2ni 803 . . . . . 6  |-  -.  (
( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) )
1410, 13pm3.2ni 803 . . . . 5  |-  -.  (
( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo  <RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  (
( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) )
15 pnfxr 7913 . . . . . 6  |- +oo  e.  RR*
16 ltxr 9664 . . . . . 6  |-  ( ( +oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( +oo  < +oo  <->  ( ( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) ) ) )
1715, 15, 16mp2an 423 . . . . 5  |-  ( +oo  < +oo  <->  ( ( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) ) )
1814, 17mtbir 661 . . . 4  |-  -. +oo  < +oo
19 breq12 3970 . . . . 5  |-  ( ( A  = +oo  /\  A  = +oo )  ->  ( A  <  A  <-> +oo 
< +oo ) )
2019anidms 395 . . . 4  |-  ( A  = +oo  ->  ( A  <  A  <-> +oo  < +oo ) )
2118, 20mtbiri 665 . . 3  |-  ( A  = +oo  ->  -.  A  <  A )
22 mnfnre 7903 . . . . . . . . . 10  |- -oo  e/  RR
2322neli 2424 . . . . . . . . 9  |-  -. -oo  e.  RR
2423intnan 915 . . . . . . . 8  |-  -.  ( -oo  e.  RR  /\ -oo  e.  RR )
2524intnanr 916 . . . . . . 7  |-  -.  (
( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )
267nesymi 2373 . . . . . . . 8  |-  -. -oo  = +oo
2726intnan 915 . . . . . . 7  |-  -.  ( -oo  = -oo  /\ -oo  = +oo )
2825, 27pm3.2ni 803 . . . . . 6  |-  -.  (
( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo  <RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo )
)
2923intnanr 916 . . . . . . 7  |-  -.  ( -oo  e.  RR  /\ -oo  = +oo )
3023intnan 915 . . . . . . 7  |-  -.  ( -oo  = -oo  /\ -oo  e.  RR )
3129, 30pm3.2ni 803 . . . . . 6  |-  -.  (
( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) )
3228, 31pm3.2ni 803 . . . . 5  |-  -.  (
( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo  <RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  (
( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) )
33 mnfxr 7917 . . . . . 6  |- -oo  e.  RR*
34 ltxr 9664 . . . . . 6  |-  ( ( -oo  e.  RR*  /\ -oo  e.  RR* )  ->  ( -oo  < -oo  <->  ( ( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) ) ) )
3533, 33, 34mp2an 423 . . . . 5  |-  ( -oo  < -oo  <->  ( ( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) ) )
3632, 35mtbir 661 . . . 4  |-  -. -oo  < -oo
37 breq12 3970 . . . . 5  |-  ( ( A  = -oo  /\  A  = -oo )  ->  ( A  <  A  <-> -oo 
< -oo ) )
3837anidms 395 . . . 4  |-  ( A  = -oo  ->  ( A  <  A  <-> -oo  < -oo ) )
3936, 38mtbiri 665 . . 3  |-  ( A  = -oo  ->  -.  A  <  A )
402, 21, 393jaoi 1285 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  -.  A  <  A )
411, 40sylbi 120 1  |-  ( A  e.  RR*  ->  -.  A  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    \/ w3o 962    = wceq 1335    e. wcel 2128   class class class wbr 3965   RRcr 7714    <RR cltrr 7719   +oocpnf 7892   -oocmnf 7893   RR*cxr 7894    < clt 7895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-pre-ltirr 7827
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4589  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900
This theorem is referenced by:  xrltnsym  9682  xrltso  9685  xrlttri3  9686  xrleid  9689  xrltne  9699  nltpnft  9700  ngtmnft  9703  xrrebnd  9705  xposdif  9768  lbioog  9799  ubioog  9800  xrmaxleim  11123  xrmaxiflemlub  11127
  Copyright terms: Public domain W3C validator