Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrltnr | Unicode version |
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrltnr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 | |
2 | ltnr 7975 | . . 3 | |
3 | pnfnre 7940 | . . . . . . . . . 10 | |
4 | 3 | neli 2433 | . . . . . . . . 9 |
5 | 4 | intnan 919 | . . . . . . . 8 |
6 | 5 | intnanr 920 | . . . . . . 7 |
7 | pnfnemnf 7953 | . . . . . . . . 9 | |
8 | 7 | neii 2338 | . . . . . . . 8 |
9 | 8 | intnanr 920 | . . . . . . 7 |
10 | 6, 9 | pm3.2ni 803 | . . . . . 6 |
11 | 4 | intnanr 920 | . . . . . . 7 |
12 | 4 | intnan 919 | . . . . . . 7 |
13 | 11, 12 | pm3.2ni 803 | . . . . . 6 |
14 | 10, 13 | pm3.2ni 803 | . . . . 5 |
15 | pnfxr 7951 | . . . . . 6 | |
16 | ltxr 9711 | . . . . . 6 | |
17 | 15, 15, 16 | mp2an 423 | . . . . 5 |
18 | 14, 17 | mtbir 661 | . . . 4 |
19 | breq12 3987 | . . . . 5 | |
20 | 19 | anidms 395 | . . . 4 |
21 | 18, 20 | mtbiri 665 | . . 3 |
22 | mnfnre 7941 | . . . . . . . . . 10 | |
23 | 22 | neli 2433 | . . . . . . . . 9 |
24 | 23 | intnan 919 | . . . . . . . 8 |
25 | 24 | intnanr 920 | . . . . . . 7 |
26 | 7 | nesymi 2382 | . . . . . . . 8 |
27 | 26 | intnan 919 | . . . . . . 7 |
28 | 25, 27 | pm3.2ni 803 | . . . . . 6 |
29 | 23 | intnanr 920 | . . . . . . 7 |
30 | 23 | intnan 919 | . . . . . . 7 |
31 | 29, 30 | pm3.2ni 803 | . . . . . 6 |
32 | 28, 31 | pm3.2ni 803 | . . . . 5 |
33 | mnfxr 7955 | . . . . . 6 | |
34 | ltxr 9711 | . . . . . 6 | |
35 | 33, 33, 34 | mp2an 423 | . . . . 5 |
36 | 32, 35 | mtbir 661 | . . . 4 |
37 | breq12 3987 | . . . . 5 | |
38 | 37 | anidms 395 | . . . 4 |
39 | 36, 38 | mtbiri 665 | . . 3 |
40 | 2, 21, 39 | 3jaoi 1293 | . 2 |
41 | 1, 40 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 class class class wbr 3982 cr 7752 cltrr 7757 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 |
This theorem is referenced by: xrltnsym 9729 xrltso 9732 xrlttri3 9733 xrleid 9736 xrltne 9749 nltpnft 9750 ngtmnft 9753 xrrebnd 9755 xposdif 9818 lbioog 9849 ubioog 9850 xrmaxleim 11185 xrmaxiflemlub 11189 |
Copyright terms: Public domain | W3C validator |