| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrltnr | Unicode version | ||
| Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltnr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9851 |
. 2
| |
| 2 | ltnr 8103 |
. . 3
| |
| 3 | pnfnre 8068 |
. . . . . . . . . 10
| |
| 4 | 3 | neli 2464 |
. . . . . . . . 9
|
| 5 | 4 | intnan 930 |
. . . . . . . 8
|
| 6 | 5 | intnanr 931 |
. . . . . . 7
|
| 7 | pnfnemnf 8081 |
. . . . . . . . 9
| |
| 8 | 7 | neii 2369 |
. . . . . . . 8
|
| 9 | 8 | intnanr 931 |
. . . . . . 7
|
| 10 | 6, 9 | pm3.2ni 814 |
. . . . . 6
|
| 11 | 4 | intnanr 931 |
. . . . . . 7
|
| 12 | 4 | intnan 930 |
. . . . . . 7
|
| 13 | 11, 12 | pm3.2ni 814 |
. . . . . 6
|
| 14 | 10, 13 | pm3.2ni 814 |
. . . . 5
|
| 15 | pnfxr 8079 |
. . . . . 6
| |
| 16 | ltxr 9850 |
. . . . . 6
| |
| 17 | 15, 15, 16 | mp2an 426 |
. . . . 5
|
| 18 | 14, 17 | mtbir 672 |
. . . 4
|
| 19 | breq12 4038 |
. . . . 5
| |
| 20 | 19 | anidms 397 |
. . . 4
|
| 21 | 18, 20 | mtbiri 676 |
. . 3
|
| 22 | mnfnre 8069 |
. . . . . . . . . 10
| |
| 23 | 22 | neli 2464 |
. . . . . . . . 9
|
| 24 | 23 | intnan 930 |
. . . . . . . 8
|
| 25 | 24 | intnanr 931 |
. . . . . . 7
|
| 26 | 7 | nesymi 2413 |
. . . . . . . 8
|
| 27 | 26 | intnan 930 |
. . . . . . 7
|
| 28 | 25, 27 | pm3.2ni 814 |
. . . . . 6
|
| 29 | 23 | intnanr 931 |
. . . . . . 7
|
| 30 | 23 | intnan 930 |
. . . . . . 7
|
| 31 | 29, 30 | pm3.2ni 814 |
. . . . . 6
|
| 32 | 28, 31 | pm3.2ni 814 |
. . . . 5
|
| 33 | mnfxr 8083 |
. . . . . 6
| |
| 34 | ltxr 9850 |
. . . . . 6
| |
| 35 | 33, 33, 34 | mp2an 426 |
. . . . 5
|
| 36 | 32, 35 | mtbir 672 |
. . . 4
|
| 37 | breq12 4038 |
. . . . 5
| |
| 38 | 37 | anidms 397 |
. . . 4
|
| 39 | 36, 38 | mtbiri 676 |
. . 3
|
| 40 | 2, 21, 39 | 3jaoi 1314 |
. 2
|
| 41 | 1, 40 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 |
| This theorem is referenced by: xrltnsym 9868 xrltso 9871 xrlttri3 9872 xrleid 9875 xrltne 9888 nltpnft 9889 ngtmnft 9892 xrrebnd 9894 xposdif 9957 lbioog 9988 ubioog 9989 xrmaxleim 11409 xrmaxiflemlub 11413 |
| Copyright terms: Public domain | W3C validator |