ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltnr Unicode version

Theorem xrltnr 9936
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrltnr  |-  ( A  e.  RR*  ->  -.  A  <  A )

Proof of Theorem xrltnr
StepHypRef Expression
1 elxr 9933 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 ltnr 8184 . . 3  |-  ( A  e.  RR  ->  -.  A  <  A )
3 pnfnre 8149 . . . . . . . . . 10  |- +oo  e/  RR
43neli 2475 . . . . . . . . 9  |-  -. +oo  e.  RR
54intnan 931 . . . . . . . 8  |-  -.  ( +oo  e.  RR  /\ +oo  e.  RR )
65intnanr 932 . . . . . . 7  |-  -.  (
( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )
7 pnfnemnf 8162 . . . . . . . . 9  |- +oo  =/= -oo
87neii 2380 . . . . . . . 8  |-  -. +oo  = -oo
98intnanr 932 . . . . . . 7  |-  -.  ( +oo  = -oo  /\ +oo  = +oo )
106, 9pm3.2ni 815 . . . . . 6  |-  -.  (
( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo  <RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo )
)
114intnanr 932 . . . . . . 7  |-  -.  ( +oo  e.  RR  /\ +oo  = +oo )
124intnan 931 . . . . . . 7  |-  -.  ( +oo  = -oo  /\ +oo  e.  RR )
1311, 12pm3.2ni 815 . . . . . 6  |-  -.  (
( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) )
1410, 13pm3.2ni 815 . . . . 5  |-  -.  (
( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo  <RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  (
( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) )
15 pnfxr 8160 . . . . . 6  |- +oo  e.  RR*
16 ltxr 9932 . . . . . 6  |-  ( ( +oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( +oo  < +oo  <->  ( ( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) ) ) )
1715, 15, 16mp2an 426 . . . . 5  |-  ( +oo  < +oo  <->  ( ( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) ) )
1814, 17mtbir 673 . . . 4  |-  -. +oo  < +oo
19 breq12 4064 . . . . 5  |-  ( ( A  = +oo  /\  A  = +oo )  ->  ( A  <  A  <-> +oo 
< +oo ) )
2019anidms 397 . . . 4  |-  ( A  = +oo  ->  ( A  <  A  <-> +oo  < +oo ) )
2118, 20mtbiri 677 . . 3  |-  ( A  = +oo  ->  -.  A  <  A )
22 mnfnre 8150 . . . . . . . . . 10  |- -oo  e/  RR
2322neli 2475 . . . . . . . . 9  |-  -. -oo  e.  RR
2423intnan 931 . . . . . . . 8  |-  -.  ( -oo  e.  RR  /\ -oo  e.  RR )
2524intnanr 932 . . . . . . 7  |-  -.  (
( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )
267nesymi 2424 . . . . . . . 8  |-  -. -oo  = +oo
2726intnan 931 . . . . . . 7  |-  -.  ( -oo  = -oo  /\ -oo  = +oo )
2825, 27pm3.2ni 815 . . . . . 6  |-  -.  (
( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo  <RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo )
)
2923intnanr 932 . . . . . . 7  |-  -.  ( -oo  e.  RR  /\ -oo  = +oo )
3023intnan 931 . . . . . . 7  |-  -.  ( -oo  = -oo  /\ -oo  e.  RR )
3129, 30pm3.2ni 815 . . . . . 6  |-  -.  (
( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) )
3228, 31pm3.2ni 815 . . . . 5  |-  -.  (
( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo  <RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  (
( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) )
33 mnfxr 8164 . . . . . 6  |- -oo  e.  RR*
34 ltxr 9932 . . . . . 6  |-  ( ( -oo  e.  RR*  /\ -oo  e.  RR* )  ->  ( -oo  < -oo  <->  ( ( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) ) ) )
3533, 33, 34mp2an 426 . . . . 5  |-  ( -oo  < -oo  <->  ( ( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) ) )
3632, 35mtbir 673 . . . 4  |-  -. -oo  < -oo
37 breq12 4064 . . . . 5  |-  ( ( A  = -oo  /\  A  = -oo )  ->  ( A  <  A  <-> -oo 
< -oo ) )
3837anidms 397 . . . 4  |-  ( A  = -oo  ->  ( A  <  A  <-> -oo  < -oo ) )
3936, 38mtbiri 677 . . 3  |-  ( A  = -oo  ->  -.  A  <  A )
402, 21, 393jaoi 1316 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  -.  A  <  A )
411, 40sylbi 121 1  |-  ( A  e.  RR*  ->  -.  A  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2178   class class class wbr 4059   RRcr 7959    <RR cltrr 7964   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147
This theorem is referenced by:  xrltnsym  9950  xrltso  9953  xrlttri3  9954  xrleid  9957  xrltne  9970  nltpnft  9971  ngtmnft  9974  xrrebnd  9976  xposdif  10039  lbioog  10070  ubioog  10071  xrmaxleim  11670  xrmaxiflemlub  11674
  Copyright terms: Public domain W3C validator