Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrltnr | Unicode version |
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrltnr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9665 | . 2 | |
2 | ltnr 7937 | . . 3 | |
3 | pnfnre 7902 | . . . . . . . . . 10 | |
4 | 3 | neli 2424 | . . . . . . . . 9 |
5 | 4 | intnan 915 | . . . . . . . 8 |
6 | 5 | intnanr 916 | . . . . . . 7 |
7 | pnfnemnf 7915 | . . . . . . . . 9 | |
8 | 7 | neii 2329 | . . . . . . . 8 |
9 | 8 | intnanr 916 | . . . . . . 7 |
10 | 6, 9 | pm3.2ni 803 | . . . . . 6 |
11 | 4 | intnanr 916 | . . . . . . 7 |
12 | 4 | intnan 915 | . . . . . . 7 |
13 | 11, 12 | pm3.2ni 803 | . . . . . 6 |
14 | 10, 13 | pm3.2ni 803 | . . . . 5 |
15 | pnfxr 7913 | . . . . . 6 | |
16 | ltxr 9664 | . . . . . 6 | |
17 | 15, 15, 16 | mp2an 423 | . . . . 5 |
18 | 14, 17 | mtbir 661 | . . . 4 |
19 | breq12 3970 | . . . . 5 | |
20 | 19 | anidms 395 | . . . 4 |
21 | 18, 20 | mtbiri 665 | . . 3 |
22 | mnfnre 7903 | . . . . . . . . . 10 | |
23 | 22 | neli 2424 | . . . . . . . . 9 |
24 | 23 | intnan 915 | . . . . . . . 8 |
25 | 24 | intnanr 916 | . . . . . . 7 |
26 | 7 | nesymi 2373 | . . . . . . . 8 |
27 | 26 | intnan 915 | . . . . . . 7 |
28 | 25, 27 | pm3.2ni 803 | . . . . . 6 |
29 | 23 | intnanr 916 | . . . . . . 7 |
30 | 23 | intnan 915 | . . . . . . 7 |
31 | 29, 30 | pm3.2ni 803 | . . . . . 6 |
32 | 28, 31 | pm3.2ni 803 | . . . . 5 |
33 | mnfxr 7917 | . . . . . 6 | |
34 | ltxr 9664 | . . . . . 6 | |
35 | 33, 33, 34 | mp2an 423 | . . . . 5 |
36 | 32, 35 | mtbir 661 | . . . 4 |
37 | breq12 3970 | . . . . 5 | |
38 | 37 | anidms 395 | . . . 4 |
39 | 36, 38 | mtbiri 665 | . . 3 |
40 | 2, 21, 39 | 3jaoi 1285 | . 2 |
41 | 1, 40 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3o 962 wceq 1335 wcel 2128 class class class wbr 3965 cr 7714 cltrr 7719 cpnf 7892 cmnf 7893 cxr 7894 clt 7895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-pre-ltirr 7827 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4589 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 |
This theorem is referenced by: xrltnsym 9682 xrltso 9685 xrlttri3 9686 xrleid 9689 xrltne 9699 nltpnft 9700 ngtmnft 9703 xrrebnd 9705 xposdif 9768 lbioog 9799 ubioog 9800 xrmaxleim 11123 xrmaxiflemlub 11127 |
Copyright terms: Public domain | W3C validator |