ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltnr Unicode version

Theorem xrltnr 9736
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrltnr  |-  ( A  e.  RR*  ->  -.  A  <  A )

Proof of Theorem xrltnr
StepHypRef Expression
1 elxr 9733 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 ltnr 7996 . . 3  |-  ( A  e.  RR  ->  -.  A  <  A )
3 pnfnre 7961 . . . . . . . . . 10  |- +oo  e/  RR
43neli 2437 . . . . . . . . 9  |-  -. +oo  e.  RR
54intnan 924 . . . . . . . 8  |-  -.  ( +oo  e.  RR  /\ +oo  e.  RR )
65intnanr 925 . . . . . . 7  |-  -.  (
( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )
7 pnfnemnf 7974 . . . . . . . . 9  |- +oo  =/= -oo
87neii 2342 . . . . . . . 8  |-  -. +oo  = -oo
98intnanr 925 . . . . . . 7  |-  -.  ( +oo  = -oo  /\ +oo  = +oo )
106, 9pm3.2ni 808 . . . . . 6  |-  -.  (
( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo  <RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo )
)
114intnanr 925 . . . . . . 7  |-  -.  ( +oo  e.  RR  /\ +oo  = +oo )
124intnan 924 . . . . . . 7  |-  -.  ( +oo  = -oo  /\ +oo  e.  RR )
1311, 12pm3.2ni 808 . . . . . 6  |-  -.  (
( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) )
1410, 13pm3.2ni 808 . . . . 5  |-  -.  (
( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo  <RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  (
( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) )
15 pnfxr 7972 . . . . . 6  |- +oo  e.  RR*
16 ltxr 9732 . . . . . 6  |-  ( ( +oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( +oo  < +oo  <->  ( ( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) ) ) )
1715, 15, 16mp2an 424 . . . . 5  |-  ( +oo  < +oo  <->  ( ( ( ( +oo  e.  RR  /\ +oo  e.  RR )  /\ +oo 
<RR +oo )  \/  ( +oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( +oo  e.  RR  /\ +oo  = +oo )  \/  ( +oo  = -oo  /\ +oo  e.  RR ) ) ) )
1814, 17mtbir 666 . . . 4  |-  -. +oo  < +oo
19 breq12 3994 . . . . 5  |-  ( ( A  = +oo  /\  A  = +oo )  ->  ( A  <  A  <-> +oo 
< +oo ) )
2019anidms 395 . . . 4  |-  ( A  = +oo  ->  ( A  <  A  <-> +oo  < +oo ) )
2118, 20mtbiri 670 . . 3  |-  ( A  = +oo  ->  -.  A  <  A )
22 mnfnre 7962 . . . . . . . . . 10  |- -oo  e/  RR
2322neli 2437 . . . . . . . . 9  |-  -. -oo  e.  RR
2423intnan 924 . . . . . . . 8  |-  -.  ( -oo  e.  RR  /\ -oo  e.  RR )
2524intnanr 925 . . . . . . 7  |-  -.  (
( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )
267nesymi 2386 . . . . . . . 8  |-  -. -oo  = +oo
2726intnan 924 . . . . . . 7  |-  -.  ( -oo  = -oo  /\ -oo  = +oo )
2825, 27pm3.2ni 808 . . . . . 6  |-  -.  (
( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo  <RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo )
)
2923intnanr 925 . . . . . . 7  |-  -.  ( -oo  e.  RR  /\ -oo  = +oo )
3023intnan 924 . . . . . . 7  |-  -.  ( -oo  = -oo  /\ -oo  e.  RR )
3129, 30pm3.2ni 808 . . . . . 6  |-  -.  (
( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) )
3228, 31pm3.2ni 808 . . . . 5  |-  -.  (
( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo  <RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  (
( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) )
33 mnfxr 7976 . . . . . 6  |- -oo  e.  RR*
34 ltxr 9732 . . . . . 6  |-  ( ( -oo  e.  RR*  /\ -oo  e.  RR* )  ->  ( -oo  < -oo  <->  ( ( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) ) ) )
3533, 33, 34mp2an 424 . . . . 5  |-  ( -oo  < -oo  <->  ( ( ( ( -oo  e.  RR  /\ -oo  e.  RR )  /\ -oo 
<RR -oo )  \/  ( -oo  = -oo  /\ -oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ -oo  = +oo )  \/  ( -oo  = -oo  /\ -oo  e.  RR ) ) ) )
3632, 35mtbir 666 . . . 4  |-  -. -oo  < -oo
37 breq12 3994 . . . . 5  |-  ( ( A  = -oo  /\  A  = -oo )  ->  ( A  <  A  <-> -oo 
< -oo ) )
3837anidms 395 . . . 4  |-  ( A  = -oo  ->  ( A  <  A  <-> -oo  < -oo ) )
3936, 38mtbiri 670 . . 3  |-  ( A  = -oo  ->  -.  A  <  A )
402, 21, 393jaoi 1298 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  -.  A  <  A )
411, 40sylbi 120 1  |-  ( A  e.  RR*  ->  -.  A  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    \/ w3o 972    = wceq 1348    e. wcel 2141   class class class wbr 3989   RRcr 7773    <RR cltrr 7778   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959
This theorem is referenced by:  xrltnsym  9750  xrltso  9753  xrlttri3  9754  xrleid  9757  xrltne  9770  nltpnft  9771  ngtmnft  9774  xrrebnd  9776  xposdif  9839  lbioog  9870  ubioog  9871  xrmaxleim  11207  xrmaxiflemlub  11211
  Copyright terms: Public domain W3C validator