| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrltnr | Unicode version | ||
| Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltnr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9898 |
. 2
| |
| 2 | ltnr 8149 |
. . 3
| |
| 3 | pnfnre 8114 |
. . . . . . . . . 10
| |
| 4 | 3 | neli 2473 |
. . . . . . . . 9
|
| 5 | 4 | intnan 931 |
. . . . . . . 8
|
| 6 | 5 | intnanr 932 |
. . . . . . 7
|
| 7 | pnfnemnf 8127 |
. . . . . . . . 9
| |
| 8 | 7 | neii 2378 |
. . . . . . . 8
|
| 9 | 8 | intnanr 932 |
. . . . . . 7
|
| 10 | 6, 9 | pm3.2ni 815 |
. . . . . 6
|
| 11 | 4 | intnanr 932 |
. . . . . . 7
|
| 12 | 4 | intnan 931 |
. . . . . . 7
|
| 13 | 11, 12 | pm3.2ni 815 |
. . . . . 6
|
| 14 | 10, 13 | pm3.2ni 815 |
. . . . 5
|
| 15 | pnfxr 8125 |
. . . . . 6
| |
| 16 | ltxr 9897 |
. . . . . 6
| |
| 17 | 15, 15, 16 | mp2an 426 |
. . . . 5
|
| 18 | 14, 17 | mtbir 673 |
. . . 4
|
| 19 | breq12 4049 |
. . . . 5
| |
| 20 | 19 | anidms 397 |
. . . 4
|
| 21 | 18, 20 | mtbiri 677 |
. . 3
|
| 22 | mnfnre 8115 |
. . . . . . . . . 10
| |
| 23 | 22 | neli 2473 |
. . . . . . . . 9
|
| 24 | 23 | intnan 931 |
. . . . . . . 8
|
| 25 | 24 | intnanr 932 |
. . . . . . 7
|
| 26 | 7 | nesymi 2422 |
. . . . . . . 8
|
| 27 | 26 | intnan 931 |
. . . . . . 7
|
| 28 | 25, 27 | pm3.2ni 815 |
. . . . . 6
|
| 29 | 23 | intnanr 932 |
. . . . . . 7
|
| 30 | 23 | intnan 931 |
. . . . . . 7
|
| 31 | 29, 30 | pm3.2ni 815 |
. . . . . 6
|
| 32 | 28, 31 | pm3.2ni 815 |
. . . . 5
|
| 33 | mnfxr 8129 |
. . . . . 6
| |
| 34 | ltxr 9897 |
. . . . . 6
| |
| 35 | 33, 33, 34 | mp2an 426 |
. . . . 5
|
| 36 | 32, 35 | mtbir 673 |
. . . 4
|
| 37 | breq12 4049 |
. . . . 5
| |
| 38 | 37 | anidms 397 |
. . . 4
|
| 39 | 36, 38 | mtbiri 677 |
. . 3
|
| 40 | 2, 21, 39 | 3jaoi 1316 |
. 2
|
| 41 | 1, 40 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 |
| This theorem is referenced by: xrltnsym 9915 xrltso 9918 xrlttri3 9919 xrleid 9922 xrltne 9935 nltpnft 9936 ngtmnft 9939 xrrebnd 9941 xposdif 10004 lbioog 10035 ubioog 10036 xrmaxleim 11555 xrmaxiflemlub 11559 |
| Copyright terms: Public domain | W3C validator |