| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrltnr | Unicode version | ||
| Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltnr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9933 |
. 2
| |
| 2 | ltnr 8184 |
. . 3
| |
| 3 | pnfnre 8149 |
. . . . . . . . . 10
| |
| 4 | 3 | neli 2475 |
. . . . . . . . 9
|
| 5 | 4 | intnan 931 |
. . . . . . . 8
|
| 6 | 5 | intnanr 932 |
. . . . . . 7
|
| 7 | pnfnemnf 8162 |
. . . . . . . . 9
| |
| 8 | 7 | neii 2380 |
. . . . . . . 8
|
| 9 | 8 | intnanr 932 |
. . . . . . 7
|
| 10 | 6, 9 | pm3.2ni 815 |
. . . . . 6
|
| 11 | 4 | intnanr 932 |
. . . . . . 7
|
| 12 | 4 | intnan 931 |
. . . . . . 7
|
| 13 | 11, 12 | pm3.2ni 815 |
. . . . . 6
|
| 14 | 10, 13 | pm3.2ni 815 |
. . . . 5
|
| 15 | pnfxr 8160 |
. . . . . 6
| |
| 16 | ltxr 9932 |
. . . . . 6
| |
| 17 | 15, 15, 16 | mp2an 426 |
. . . . 5
|
| 18 | 14, 17 | mtbir 673 |
. . . 4
|
| 19 | breq12 4064 |
. . . . 5
| |
| 20 | 19 | anidms 397 |
. . . 4
|
| 21 | 18, 20 | mtbiri 677 |
. . 3
|
| 22 | mnfnre 8150 |
. . . . . . . . . 10
| |
| 23 | 22 | neli 2475 |
. . . . . . . . 9
|
| 24 | 23 | intnan 931 |
. . . . . . . 8
|
| 25 | 24 | intnanr 932 |
. . . . . . 7
|
| 26 | 7 | nesymi 2424 |
. . . . . . . 8
|
| 27 | 26 | intnan 931 |
. . . . . . 7
|
| 28 | 25, 27 | pm3.2ni 815 |
. . . . . 6
|
| 29 | 23 | intnanr 932 |
. . . . . . 7
|
| 30 | 23 | intnan 931 |
. . . . . . 7
|
| 31 | 29, 30 | pm3.2ni 815 |
. . . . . 6
|
| 32 | 28, 31 | pm3.2ni 815 |
. . . . 5
|
| 33 | mnfxr 8164 |
. . . . . 6
| |
| 34 | ltxr 9932 |
. . . . . 6
| |
| 35 | 33, 33, 34 | mp2an 426 |
. . . . 5
|
| 36 | 32, 35 | mtbir 673 |
. . . 4
|
| 37 | breq12 4064 |
. . . . 5
| |
| 38 | 37 | anidms 397 |
. . . 4
|
| 39 | 36, 38 | mtbiri 677 |
. . 3
|
| 40 | 2, 21, 39 | 3jaoi 1316 |
. 2
|
| 41 | 1, 40 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 |
| This theorem is referenced by: xrltnsym 9950 xrltso 9953 xrlttri3 9954 xrleid 9957 xrltne 9970 nltpnft 9971 ngtmnft 9974 xrrebnd 9976 xposdif 10039 lbioog 10070 ubioog 10071 xrmaxleim 11670 xrmaxiflemlub 11674 |
| Copyright terms: Public domain | W3C validator |