Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjum | Unicode version |
Description: Lemma for fodjuomni 7113 and fodjumkv 7124. A condition which shows that is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjuf.fo | ⊔ |
fodjuf.p | inl |
fodjum.z |
Ref | Expression |
---|---|
fodjum |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjum.z | . 2 | |
2 | 1n0 6400 | . . . . . . . . 9 | |
3 | 2 | nesymi 2382 | . . . . . . . 8 |
4 | 3 | intnan 919 | . . . . . . 7 inl |
5 | 4 | a1i 9 | . . . . . 6 inl |
6 | simprr 522 | . . . . . . . 8 | |
7 | fodjuf.p | . . . . . . . . 9 inl | |
8 | fveqeq2 5495 | . . . . . . . . . . 11 inl inl | |
9 | 8 | rexbidv 2467 | . . . . . . . . . 10 inl inl |
10 | 9 | ifbid 3541 | . . . . . . . . 9 inl inl |
11 | simprl 521 | . . . . . . . . 9 | |
12 | peano1 4571 | . . . . . . . . . . 11 | |
13 | 12 | a1i 9 | . . . . . . . . . 10 |
14 | 1onn 6488 | . . . . . . . . . . 11 | |
15 | 14 | a1i 9 | . . . . . . . . . 10 |
16 | fodjuf.fo | . . . . . . . . . . . 12 ⊔ | |
17 | 16 | fodjuomnilemdc 7108 | . . . . . . . . . . 11 DECID inl |
18 | 17 | adantrr 471 | . . . . . . . . . 10 DECID inl |
19 | 13, 15, 18 | ifcldcd 3555 | . . . . . . . . 9 inl |
20 | 7, 10, 11, 19 | fvmptd3 5579 | . . . . . . . 8 inl |
21 | 6, 20 | eqtr3d 2200 | . . . . . . 7 inl |
22 | eqifdc 3554 | . . . . . . . 8 DECID inl inl inl inl | |
23 | 18, 22 | syl 14 | . . . . . . 7 inl inl inl |
24 | 21, 23 | mpbid 146 | . . . . . 6 inl inl |
25 | 5, 24 | ecased 1339 | . . . . 5 inl |
26 | 25 | simpld 111 | . . . 4 inl |
27 | rexm 3508 | . . . 4 inl | |
28 | 26, 27 | syl 14 | . . 3 |
29 | eleq1w 2227 | . . . 4 | |
30 | 29 | cbvexv 1906 | . . 3 |
31 | 28, 30 | sylib 121 | . 2 |
32 | 1, 31 | rexlimddv 2588 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 wex 1480 wcel 2136 wrex 2445 c0 3409 cif 3520 cmpt 4043 com 4567 wfo 5186 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: fodjuomnilemres 7112 fodjumkvlemres 7123 |
Copyright terms: Public domain | W3C validator |