| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjum | Unicode version | ||
| Description: Lemma for fodjuomni 7316 and fodjumkv 7327. A condition which shows that
|
| Ref | Expression |
|---|---|
| fodjuf.fo |
|
| fodjuf.p |
|
| fodjum.z |
|
| Ref | Expression |
|---|---|
| fodjum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjum.z |
. 2
| |
| 2 | 1n0 6578 |
. . . . . . . . 9
| |
| 3 | 2 | nesymi 2446 |
. . . . . . . 8
|
| 4 | 3 | intnan 934 |
. . . . . . 7
|
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | simprr 531 |
. . . . . . . 8
| |
| 7 | fodjuf.p |
. . . . . . . . 9
| |
| 8 | fveqeq2 5636 |
. . . . . . . . . . 11
| |
| 9 | 8 | rexbidv 2531 |
. . . . . . . . . 10
|
| 10 | 9 | ifbid 3624 |
. . . . . . . . 9
|
| 11 | simprl 529 |
. . . . . . . . 9
| |
| 12 | peano1 4686 |
. . . . . . . . . . 11
| |
| 13 | 12 | a1i 9 |
. . . . . . . . . 10
|
| 14 | 1onn 6666 |
. . . . . . . . . . 11
| |
| 15 | 14 | a1i 9 |
. . . . . . . . . 10
|
| 16 | fodjuf.fo |
. . . . . . . . . . . 12
| |
| 17 | 16 | fodjuomnilemdc 7311 |
. . . . . . . . . . 11
|
| 18 | 17 | adantrr 479 |
. . . . . . . . . 10
|
| 19 | 13, 15, 18 | ifcldcd 3640 |
. . . . . . . . 9
|
| 20 | 7, 10, 11, 19 | fvmptd3 5728 |
. . . . . . . 8
|
| 21 | 6, 20 | eqtr3d 2264 |
. . . . . . 7
|
| 22 | eqifdc 3639 |
. . . . . . . 8
| |
| 23 | 18, 22 | syl 14 |
. . . . . . 7
|
| 24 | 21, 23 | mpbid 147 |
. . . . . 6
|
| 25 | 5, 24 | ecased 1383 |
. . . . 5
|
| 26 | 25 | simpld 112 |
. . . 4
|
| 27 | rexm 3591 |
. . . 4
| |
| 28 | 26, 27 | syl 14 |
. . 3
|
| 29 | eleq1w 2290 |
. . . 4
| |
| 30 | 29 | cbvexv 1965 |
. . 3
|
| 31 | 28, 30 | sylib 122 |
. 2
|
| 32 | 1, 31 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-1o 6562 df-dju 7205 df-inl 7214 df-inr 7215 |
| This theorem is referenced by: fodjuomnilemres 7315 fodjumkvlemres 7326 |
| Copyright terms: Public domain | W3C validator |