ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjum Unicode version

Theorem fodjum 7250
Description: Lemma for fodjuomni 7253 and fodjumkv 7264. A condition which shows that  A is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuf.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
fodjum.z  |-  ( ph  ->  E. w  e.  O  ( P `  w )  =  (/) )
Assertion
Ref Expression
fodjum  |-  ( ph  ->  E. x  x  e.  A )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F    w, A, x, z    y, A, w    y, F    ph, w
Allowed substitution hints:    ph( x)    B( x, y, w)    P( x, y, z, w)    F( x, w)    O( x, w)

Proof of Theorem fodjum
StepHypRef Expression
1 fodjum.z . 2  |-  ( ph  ->  E. w  e.  O  ( P `  w )  =  (/) )
2 1n0 6520 . . . . . . . . 9  |-  1o  =/=  (/)
32nesymi 2422 . . . . . . . 8  |-  -.  (/)  =  1o
43intnan 931 . . . . . . 7  |-  -.  ( -.  E. z  e.  A  ( F `  w )  =  (inl `  z
)  /\  (/)  =  1o )
54a1i 9 . . . . . 6  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  -.  ( -.  E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  1o ) )
6 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( P `  w
)  =  (/) )
7 fodjuf.p . . . . . . . . 9  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
8 fveqeq2 5587 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( F `  y
)  =  (inl `  z )  <->  ( F `  w )  =  (inl
`  z ) ) )
98rexbidv 2507 . . . . . . . . . 10  |-  ( y  =  w  ->  ( E. z  e.  A  ( F `  y )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  w )  =  (inl `  z
) ) )
109ifbid 3592 . . . . . . . . 9  |-  ( y  =  w  ->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) )
11 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  w  e.  O )
12 peano1 4643 . . . . . . . . . . 11  |-  (/)  e.  om
1312a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  (/) 
e.  om )
14 1onn 6608 . . . . . . . . . . 11  |-  1o  e.  om
1514a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  1o  e.  om )
16 fodjuf.fo . . . . . . . . . . . 12  |-  ( ph  ->  F : O -onto-> ( A B ) )
1716fodjuomnilemdc 7248 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  O )  -> DECID  E. z  e.  A  ( F `  w )  =  (inl `  z
) )
1817adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> DECID  E. z  e.  A  ( F `  w )  =  (inl
`  z ) )
1913, 15, 18ifcldcd 3608 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  if ( E. z  e.  A  ( F `  w )  =  (inl
`  z ) ,  (/) ,  1o )  e. 
om )
207, 10, 11, 19fvmptd3 5675 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( P `  w
)  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) )
216, 20eqtr3d 2240 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  (/)  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) )
22 eqifdc 3607 . . . . . . . 8  |-  (DECID  E. z  e.  A  ( F `  w )  =  (inl
`  z )  -> 
( (/)  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) 
<->  ( ( E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  (/) )  \/  ( -.  E. z  e.  A  ( F `  w )  =  (inl `  z
)  /\  (/)  =  1o ) ) ) )
2318, 22syl 14 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( (/)  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) 
<->  ( ( E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  (/) )  \/  ( -.  E. z  e.  A  ( F `  w )  =  (inl `  z
)  /\  (/)  =  1o ) ) ) )
2421, 23mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( ( E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  (/) )  \/  ( -.  E. z  e.  A  ( F `  w )  =  (inl `  z
)  /\  (/)  =  1o ) ) )
255, 24ecased 1362 . . . . 5  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  (/) ) )
2625simpld 112 . . . 4  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  E. z  e.  A  ( F `  w )  =  (inl `  z
) )
27 rexm 3560 . . . 4  |-  ( E. z  e.  A  ( F `  w )  =  (inl `  z
)  ->  E. z 
z  e.  A )
2826, 27syl 14 . . 3  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  E. z  z  e.  A )
29 eleq1w 2266 . . . 4  |-  ( z  =  x  ->  (
z  e.  A  <->  x  e.  A ) )
3029cbvexv 1942 . . 3  |-  ( E. z  z  e.  A  <->  E. x  x  e.  A
)
3128, 30sylib 122 . 2  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  E. x  x  e.  A )
321, 31rexlimddv 2628 1  |-  ( ph  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   (/)c0 3460   ifcif 3571    |-> cmpt 4106   omcom 4639   -onto->wfo 5270   ` cfv 5272   1oc1o 6497   ⊔ cdju 7141  inlcinl 7149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-dju 7142  df-inl 7151  df-inr 7152
This theorem is referenced by:  fodjuomnilemres  7252  fodjumkvlemres  7263
  Copyright terms: Public domain W3C validator