ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjum Unicode version

Theorem fodjum 7274
Description: Lemma for fodjuomni 7277 and fodjumkv 7288. A condition which shows that  A is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuf.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
fodjum.z  |-  ( ph  ->  E. w  e.  O  ( P `  w )  =  (/) )
Assertion
Ref Expression
fodjum  |-  ( ph  ->  E. x  x  e.  A )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F    w, A, x, z    y, A, w    y, F    ph, w
Allowed substitution hints:    ph( x)    B( x, y, w)    P( x, y, z, w)    F( x, w)    O( x, w)

Proof of Theorem fodjum
StepHypRef Expression
1 fodjum.z . 2  |-  ( ph  ->  E. w  e.  O  ( P `  w )  =  (/) )
2 1n0 6541 . . . . . . . . 9  |-  1o  =/=  (/)
32nesymi 2424 . . . . . . . 8  |-  -.  (/)  =  1o
43intnan 931 . . . . . . 7  |-  -.  ( -.  E. z  e.  A  ( F `  w )  =  (inl `  z
)  /\  (/)  =  1o )
54a1i 9 . . . . . 6  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  -.  ( -.  E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  1o ) )
6 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( P `  w
)  =  (/) )
7 fodjuf.p . . . . . . . . 9  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
8 fveqeq2 5608 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( F `  y
)  =  (inl `  z )  <->  ( F `  w )  =  (inl
`  z ) ) )
98rexbidv 2509 . . . . . . . . . 10  |-  ( y  =  w  ->  ( E. z  e.  A  ( F `  y )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  w )  =  (inl `  z
) ) )
109ifbid 3601 . . . . . . . . 9  |-  ( y  =  w  ->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) )
11 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  w  e.  O )
12 peano1 4660 . . . . . . . . . . 11  |-  (/)  e.  om
1312a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  (/) 
e.  om )
14 1onn 6629 . . . . . . . . . . 11  |-  1o  e.  om
1514a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  1o  e.  om )
16 fodjuf.fo . . . . . . . . . . . 12  |-  ( ph  ->  F : O -onto-> ( A B ) )
1716fodjuomnilemdc 7272 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  O )  -> DECID  E. z  e.  A  ( F `  w )  =  (inl `  z
) )
1817adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> DECID  E. z  e.  A  ( F `  w )  =  (inl
`  z ) )
1913, 15, 18ifcldcd 3617 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  if ( E. z  e.  A  ( F `  w )  =  (inl
`  z ) ,  (/) ,  1o )  e. 
om )
207, 10, 11, 19fvmptd3 5696 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( P `  w
)  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) )
216, 20eqtr3d 2242 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  (/)  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) )
22 eqifdc 3616 . . . . . . . 8  |-  (DECID  E. z  e.  A  ( F `  w )  =  (inl
`  z )  -> 
( (/)  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) 
<->  ( ( E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  (/) )  \/  ( -.  E. z  e.  A  ( F `  w )  =  (inl `  z
)  /\  (/)  =  1o ) ) ) )
2318, 22syl 14 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( (/)  =  if ( E. z  e.  A  ( F `  w )  =  (inl `  z
) ,  (/) ,  1o ) 
<->  ( ( E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  (/) )  \/  ( -.  E. z  e.  A  ( F `  w )  =  (inl `  z
)  /\  (/)  =  1o ) ) ) )
2421, 23mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( ( E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  (/) )  \/  ( -.  E. z  e.  A  ( F `  w )  =  (inl `  z
)  /\  (/)  =  1o ) ) )
255, 24ecased 1362 . . . . 5  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  -> 
( E. z  e.  A  ( F `  w )  =  (inl
`  z )  /\  (/)  =  (/) ) )
2625simpld 112 . . . 4  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  E. z  e.  A  ( F `  w )  =  (inl `  z
) )
27 rexm 3568 . . . 4  |-  ( E. z  e.  A  ( F `  w )  =  (inl `  z
)  ->  E. z 
z  e.  A )
2826, 27syl 14 . . 3  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  E. z  z  e.  A )
29 eleq1w 2268 . . . 4  |-  ( z  =  x  ->  (
z  e.  A  <->  x  e.  A ) )
3029cbvexv 1943 . . 3  |-  ( E. z  z  e.  A  <->  E. x  x  e.  A
)
3128, 30sylib 122 . 2  |-  ( (
ph  /\  ( w  e.  O  /\  ( P `  w )  =  (/) ) )  ->  E. x  x  e.  A )
321, 31rexlimddv 2630 1  |-  ( ph  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373   E.wex 1516    e. wcel 2178   E.wrex 2487   (/)c0 3468   ifcif 3579    |-> cmpt 4121   omcom 4656   -onto->wfo 5288   ` cfv 5290   1oc1o 6518   ⊔ cdju 7165  inlcinl 7173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  fodjuomnilemres  7276  fodjumkvlemres  7287
  Copyright terms: Public domain W3C validator