| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjum | Unicode version | ||
| Description: Lemma for fodjuomni 7277 and fodjumkv 7288. A condition which shows that
|
| Ref | Expression |
|---|---|
| fodjuf.fo |
|
| fodjuf.p |
|
| fodjum.z |
|
| Ref | Expression |
|---|---|
| fodjum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjum.z |
. 2
| |
| 2 | 1n0 6541 |
. . . . . . . . 9
| |
| 3 | 2 | nesymi 2424 |
. . . . . . . 8
|
| 4 | 3 | intnan 931 |
. . . . . . 7
|
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | simprr 531 |
. . . . . . . 8
| |
| 7 | fodjuf.p |
. . . . . . . . 9
| |
| 8 | fveqeq2 5608 |
. . . . . . . . . . 11
| |
| 9 | 8 | rexbidv 2509 |
. . . . . . . . . 10
|
| 10 | 9 | ifbid 3601 |
. . . . . . . . 9
|
| 11 | simprl 529 |
. . . . . . . . 9
| |
| 12 | peano1 4660 |
. . . . . . . . . . 11
| |
| 13 | 12 | a1i 9 |
. . . . . . . . . 10
|
| 14 | 1onn 6629 |
. . . . . . . . . . 11
| |
| 15 | 14 | a1i 9 |
. . . . . . . . . 10
|
| 16 | fodjuf.fo |
. . . . . . . . . . . 12
| |
| 17 | 16 | fodjuomnilemdc 7272 |
. . . . . . . . . . 11
|
| 18 | 17 | adantrr 479 |
. . . . . . . . . 10
|
| 19 | 13, 15, 18 | ifcldcd 3617 |
. . . . . . . . 9
|
| 20 | 7, 10, 11, 19 | fvmptd3 5696 |
. . . . . . . 8
|
| 21 | 6, 20 | eqtr3d 2242 |
. . . . . . 7
|
| 22 | eqifdc 3616 |
. . . . . . . 8
| |
| 23 | 18, 22 | syl 14 |
. . . . . . 7
|
| 24 | 21, 23 | mpbid 147 |
. . . . . 6
|
| 25 | 5, 24 | ecased 1362 |
. . . . 5
|
| 26 | 25 | simpld 112 |
. . . 4
|
| 27 | rexm 3568 |
. . . 4
| |
| 28 | 26, 27 | syl 14 |
. . 3
|
| 29 | eleq1w 2268 |
. . . 4
| |
| 30 | 29 | cbvexv 1943 |
. . 3
|
| 31 | 28, 30 | sylib 122 |
. 2
|
| 32 | 1, 31 | rexlimddv 2630 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: fodjuomnilemres 7276 fodjumkvlemres 7287 |
| Copyright terms: Public domain | W3C validator |