Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjum | Unicode version |
Description: Lemma for fodjuomni 7125 and fodjumkv 7136. A condition which shows that is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjuf.fo | ⊔ |
fodjuf.p | inl |
fodjum.z |
Ref | Expression |
---|---|
fodjum |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjum.z | . 2 | |
2 | 1n0 6411 | . . . . . . . . 9 | |
3 | 2 | nesymi 2386 | . . . . . . . 8 |
4 | 3 | intnan 924 | . . . . . . 7 inl |
5 | 4 | a1i 9 | . . . . . 6 inl |
6 | simprr 527 | . . . . . . . 8 | |
7 | fodjuf.p | . . . . . . . . 9 inl | |
8 | fveqeq2 5505 | . . . . . . . . . . 11 inl inl | |
9 | 8 | rexbidv 2471 | . . . . . . . . . 10 inl inl |
10 | 9 | ifbid 3547 | . . . . . . . . 9 inl inl |
11 | simprl 526 | . . . . . . . . 9 | |
12 | peano1 4578 | . . . . . . . . . . 11 | |
13 | 12 | a1i 9 | . . . . . . . . . 10 |
14 | 1onn 6499 | . . . . . . . . . . 11 | |
15 | 14 | a1i 9 | . . . . . . . . . 10 |
16 | fodjuf.fo | . . . . . . . . . . . 12 ⊔ | |
17 | 16 | fodjuomnilemdc 7120 | . . . . . . . . . . 11 DECID inl |
18 | 17 | adantrr 476 | . . . . . . . . . 10 DECID inl |
19 | 13, 15, 18 | ifcldcd 3561 | . . . . . . . . 9 inl |
20 | 7, 10, 11, 19 | fvmptd3 5589 | . . . . . . . 8 inl |
21 | 6, 20 | eqtr3d 2205 | . . . . . . 7 inl |
22 | eqifdc 3560 | . . . . . . . 8 DECID inl inl inl inl | |
23 | 18, 22 | syl 14 | . . . . . . 7 inl inl inl |
24 | 21, 23 | mpbid 146 | . . . . . 6 inl inl |
25 | 5, 24 | ecased 1344 | . . . . 5 inl |
26 | 25 | simpld 111 | . . . 4 inl |
27 | rexm 3514 | . . . 4 inl | |
28 | 26, 27 | syl 14 | . . 3 |
29 | eleq1w 2231 | . . . 4 | |
30 | 29 | cbvexv 1911 | . . 3 |
31 | 28, 30 | sylib 121 | . 2 |
32 | 1, 31 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 wceq 1348 wex 1485 wcel 2141 wrex 2449 c0 3414 cif 3526 cmpt 4050 com 4574 wfo 5196 cfv 5198 c1o 6388 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: fodjuomnilemres 7124 fodjumkvlemres 7135 |
Copyright terms: Public domain | W3C validator |