ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm Unicode version

Theorem 3lcm2e6woprm 12408
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm  |-  ( 3 lcm  2 )  =  6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 9111 . . . 4  |-  3  e.  CC
2 2cn 9107 . . . 4  |-  2  e.  CC
31, 2mulcli 8077 . . 3  |-  ( 3  x.  2 )  e.  CC
4 3z 9401 . . . 4  |-  3  e.  ZZ
5 2z 9400 . . . 4  |-  2  e.  ZZ
6 lcmcl 12394 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  NN0 )
76nn0cnd 9350 . . . 4  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  CC )
84, 5, 7mp2an 426 . . 3  |-  ( 3 lcm  2 )  e.  CC
94, 5pm3.2i 272 . . . . 5  |-  ( 3  e.  ZZ  /\  2  e.  ZZ )
10 2ne0 9128 . . . . . . 7  |-  2  =/=  0
1110neii 2378 . . . . . 6  |-  -.  2  =  0
1211intnan 931 . . . . 5  |-  -.  (
3  =  0  /\  2  =  0 )
13 gcdn0cl 12283 . . . . . 6  |-  ( ( ( 3  e.  ZZ  /\  2  e.  ZZ )  /\  -.  ( 3  =  0  /\  2  =  0 ) )  ->  ( 3  gcd  2 )  e.  NN )
1413nncnd 9050 . . . . 5  |-  ( ( ( 3  e.  ZZ  /\  2  e.  ZZ )  /\  -.  ( 3  =  0  /\  2  =  0 ) )  ->  ( 3  gcd  2 )  e.  CC )
159, 12, 14mp2an 426 . . . 4  |-  ( 3  gcd  2 )  e.  CC
169, 12, 13mp2an 426 . . . . . 6  |-  ( 3  gcd  2 )  e.  NN
1716nnne0i 9068 . . . . 5  |-  ( 3  gcd  2 )  =/=  0
1816nnzi 9393 . . . . . 6  |-  ( 3  gcd  2 )  e.  ZZ
19 0z 9383 . . . . . 6  |-  0  e.  ZZ
20 zapne 9447 . . . . . 6  |-  ( ( ( 3  gcd  2
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( 3  gcd  2 ) #  0  <->  (
3  gcd  2 )  =/=  0 ) )
2118, 19, 20mp2an 426 . . . . 5  |-  ( ( 3  gcd  2 ) #  0  <->  ( 3  gcd  2 )  =/=  0
)
2217, 21mpbir 146 . . . 4  |-  ( 3  gcd  2 ) #  0
2315, 22pm3.2i 272 . . 3  |-  ( ( 3  gcd  2 )  e.  CC  /\  (
3  gcd  2 ) #  0 )
24 3nn 9199 . . . . . . 7  |-  3  e.  NN
25 2nn 9198 . . . . . . 7  |-  2  e.  NN
2624, 25pm3.2i 272 . . . . . 6  |-  ( 3  e.  NN  /\  2  e.  NN )
27 lcmgcdnn 12404 . . . . . . 7  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) )  =  ( 3  x.  2 ) )
2827eqcomd 2211 . . . . . 6  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) ) )
2926, 28mp1i 10 . . . . 5  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) ) )
30 divmulap3 8750 . . . . 5  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )  =  ( 3 lcm  2 )  <-> 
( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) ) ) )
3129, 30mpbird 167 . . . 4  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( ( 3  x.  2 )  / 
( 3  gcd  2
) )  =  ( 3 lcm  2 ) )
3231eqcomd 2211 . . 3  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( 3 lcm  2 )  =  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) ) )
333, 8, 23, 32mp3an 1350 . 2  |-  ( 3 lcm  2 )  =  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )
34 gcdcom 12294 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3  gcd  2
)  =  ( 2  gcd  3 ) )
354, 5, 34mp2an 426 . . . 4  |-  ( 3  gcd  2 )  =  ( 2  gcd  3
)
36 1z 9398 . . . . . . . . 9  |-  1  e.  ZZ
37 gcdid 12307 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  gcd  1 )  =  ( abs `  1
) )
3836, 37ax-mp 5 . . . . . . . 8  |-  ( 1  gcd  1 )  =  ( abs `  1
)
39 abs1 11383 . . . . . . . 8  |-  ( abs `  1 )  =  1
4038, 39eqtr2i 2227 . . . . . . 7  |-  1  =  ( 1  gcd  1 )
41 gcdadd 12306 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  1  e.  ZZ )  ->  ( 1  gcd  1
)  =  ( 1  gcd  ( 1  +  1 ) ) )
4236, 36, 41mp2an 426 . . . . . . 7  |-  ( 1  gcd  1 )  =  ( 1  gcd  (
1  +  1 ) )
43 1p1e2 9153 . . . . . . . 8  |-  ( 1  +  1 )  =  2
4443oveq2i 5955 . . . . . . 7  |-  ( 1  gcd  ( 1  +  1 ) )  =  ( 1  gcd  2
)
4540, 42, 443eqtri 2230 . . . . . 6  |-  1  =  ( 1  gcd  2 )
46 gcdcom 12294 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  2  e.  ZZ )  ->  ( 1  gcd  2
)  =  ( 2  gcd  1 ) )
4736, 5, 46mp2an 426 . . . . . 6  |-  ( 1  gcd  2 )  =  ( 2  gcd  1
)
48 gcdadd 12306 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  ( 2  gcd  1
)  =  ( 2  gcd  ( 1  +  2 ) ) )
495, 36, 48mp2an 426 . . . . . 6  |-  ( 2  gcd  1 )  =  ( 2  gcd  (
1  +  2 ) )
5045, 47, 493eqtri 2230 . . . . 5  |-  1  =  ( 2  gcd  ( 1  +  2 ) )
51 1p2e3 9171 . . . . . 6  |-  ( 1  +  2 )  =  3
5251oveq2i 5955 . . . . 5  |-  ( 2  gcd  ( 1  +  2 ) )  =  ( 2  gcd  3
)
5350, 52eqtr2i 2227 . . . 4  |-  ( 2  gcd  3 )  =  1
5435, 53eqtri 2226 . . 3  |-  ( 3  gcd  2 )  =  1
5554oveq2i 5955 . 2  |-  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )  =  ( ( 3  x.  2 )  /  1
)
56 3t2e6 9193 . . . 4  |-  ( 3  x.  2 )  =  6
5756oveq1i 5954 . . 3  |-  ( ( 3  x.  2 )  /  1 )  =  ( 6  /  1
)
58 6cn 9118 . . . 4  |-  6  e.  CC
5958div1i 8813 . . 3  |-  ( 6  /  1 )  =  6
6057, 59eqtri 2226 . 2  |-  ( ( 3  x.  2 )  /  1 )  =  6
6133, 55, 603eqtri 2230 1  |-  ( 3 lcm  2 )  =  6
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930   # cap 8654    / cdiv 8745   NNcn 9036   2c2 9087   3c3 9088   6c6 9091   ZZcz 9372   abscabs 11308    gcd cgcd 12274   lcm clcm 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-lcm 12383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator