| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3lcm2e6woprm | Unicode version | ||
| Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 3lcm2e6woprm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 9111 |
. . . 4
| |
| 2 | 2cn 9107 |
. . . 4
| |
| 3 | 1, 2 | mulcli 8077 |
. . 3
|
| 4 | 3z 9401 |
. . . 4
| |
| 5 | 2z 9400 |
. . . 4
| |
| 6 | lcmcl 12394 |
. . . . 5
| |
| 7 | 6 | nn0cnd 9350 |
. . . 4
|
| 8 | 4, 5, 7 | mp2an 426 |
. . 3
|
| 9 | 4, 5 | pm3.2i 272 |
. . . . 5
|
| 10 | 2ne0 9128 |
. . . . . . 7
| |
| 11 | 10 | neii 2378 |
. . . . . 6
|
| 12 | 11 | intnan 931 |
. . . . 5
|
| 13 | gcdn0cl 12283 |
. . . . . 6
| |
| 14 | 13 | nncnd 9050 |
. . . . 5
|
| 15 | 9, 12, 14 | mp2an 426 |
. . . 4
|
| 16 | 9, 12, 13 | mp2an 426 |
. . . . . 6
|
| 17 | 16 | nnne0i 9068 |
. . . . 5
|
| 18 | 16 | nnzi 9393 |
. . . . . 6
|
| 19 | 0z 9383 |
. . . . . 6
| |
| 20 | zapne 9447 |
. . . . . 6
| |
| 21 | 18, 19, 20 | mp2an 426 |
. . . . 5
|
| 22 | 17, 21 | mpbir 146 |
. . . 4
|
| 23 | 15, 22 | pm3.2i 272 |
. . 3
|
| 24 | 3nn 9199 |
. . . . . . 7
| |
| 25 | 2nn 9198 |
. . . . . . 7
| |
| 26 | 24, 25 | pm3.2i 272 |
. . . . . 6
|
| 27 | lcmgcdnn 12404 |
. . . . . . 7
| |
| 28 | 27 | eqcomd 2211 |
. . . . . 6
|
| 29 | 26, 28 | mp1i 10 |
. . . . 5
|
| 30 | divmulap3 8750 |
. . . . 5
| |
| 31 | 29, 30 | mpbird 167 |
. . . 4
|
| 32 | 31 | eqcomd 2211 |
. . 3
|
| 33 | 3, 8, 23, 32 | mp3an 1350 |
. 2
|
| 34 | gcdcom 12294 |
. . . . 5
| |
| 35 | 4, 5, 34 | mp2an 426 |
. . . 4
|
| 36 | 1z 9398 |
. . . . . . . . 9
| |
| 37 | gcdid 12307 |
. . . . . . . . 9
| |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . 8
|
| 39 | abs1 11383 |
. . . . . . . 8
| |
| 40 | 38, 39 | eqtr2i 2227 |
. . . . . . 7
|
| 41 | gcdadd 12306 |
. . . . . . . 8
| |
| 42 | 36, 36, 41 | mp2an 426 |
. . . . . . 7
|
| 43 | 1p1e2 9153 |
. . . . . . . 8
| |
| 44 | 43 | oveq2i 5955 |
. . . . . . 7
|
| 45 | 40, 42, 44 | 3eqtri 2230 |
. . . . . 6
|
| 46 | gcdcom 12294 |
. . . . . . 7
| |
| 47 | 36, 5, 46 | mp2an 426 |
. . . . . 6
|
| 48 | gcdadd 12306 |
. . . . . . 7
| |
| 49 | 5, 36, 48 | mp2an 426 |
. . . . . 6
|
| 50 | 45, 47, 49 | 3eqtri 2230 |
. . . . 5
|
| 51 | 1p2e3 9171 |
. . . . . 6
| |
| 52 | 51 | oveq2i 5955 |
. . . . 5
|
| 53 | 50, 52 | eqtr2i 2227 |
. . . 4
|
| 54 | 35, 53 | eqtri 2226 |
. . 3
|
| 55 | 54 | oveq2i 5955 |
. 2
|
| 56 | 3t2e6 9193 |
. . . 4
| |
| 57 | 56 | oveq1i 5954 |
. . 3
|
| 58 | 6cn 9118 |
. . . 4
| |
| 59 | 58 | div1i 8813 |
. . 3
|
| 60 | 57, 59 | eqtri 2226 |
. 2
|
| 61 | 33, 55, 60 | 3eqtri 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-dvds 12099 df-gcd 12275 df-lcm 12383 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |