ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm Unicode version

Theorem 3lcm2e6woprm 12088
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm  |-  ( 3 lcm  2 )  =  6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 8996 . . . 4  |-  3  e.  CC
2 2cn 8992 . . . 4  |-  2  e.  CC
31, 2mulcli 7964 . . 3  |-  ( 3  x.  2 )  e.  CC
4 3z 9284 . . . 4  |-  3  e.  ZZ
5 2z 9283 . . . 4  |-  2  e.  ZZ
6 lcmcl 12074 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  NN0 )
76nn0cnd 9233 . . . 4  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  CC )
84, 5, 7mp2an 426 . . 3  |-  ( 3 lcm  2 )  e.  CC
94, 5pm3.2i 272 . . . . 5  |-  ( 3  e.  ZZ  /\  2  e.  ZZ )
10 2ne0 9013 . . . . . . 7  |-  2  =/=  0
1110neii 2349 . . . . . 6  |-  -.  2  =  0
1211intnan 929 . . . . 5  |-  -.  (
3  =  0  /\  2  =  0 )
13 gcdn0cl 11965 . . . . . 6  |-  ( ( ( 3  e.  ZZ  /\  2  e.  ZZ )  /\  -.  ( 3  =  0  /\  2  =  0 ) )  ->  ( 3  gcd  2 )  e.  NN )
1413nncnd 8935 . . . . 5  |-  ( ( ( 3  e.  ZZ  /\  2  e.  ZZ )  /\  -.  ( 3  =  0  /\  2  =  0 ) )  ->  ( 3  gcd  2 )  e.  CC )
159, 12, 14mp2an 426 . . . 4  |-  ( 3  gcd  2 )  e.  CC
169, 12, 13mp2an 426 . . . . . 6  |-  ( 3  gcd  2 )  e.  NN
1716nnne0i 8953 . . . . 5  |-  ( 3  gcd  2 )  =/=  0
1816nnzi 9276 . . . . . 6  |-  ( 3  gcd  2 )  e.  ZZ
19 0z 9266 . . . . . 6  |-  0  e.  ZZ
20 zapne 9329 . . . . . 6  |-  ( ( ( 3  gcd  2
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( 3  gcd  2 ) #  0  <->  (
3  gcd  2 )  =/=  0 ) )
2118, 19, 20mp2an 426 . . . . 5  |-  ( ( 3  gcd  2 ) #  0  <->  ( 3  gcd  2 )  =/=  0
)
2217, 21mpbir 146 . . . 4  |-  ( 3  gcd  2 ) #  0
2315, 22pm3.2i 272 . . 3  |-  ( ( 3  gcd  2 )  e.  CC  /\  (
3  gcd  2 ) #  0 )
24 3nn 9083 . . . . . . 7  |-  3  e.  NN
25 2nn 9082 . . . . . . 7  |-  2  e.  NN
2624, 25pm3.2i 272 . . . . . 6  |-  ( 3  e.  NN  /\  2  e.  NN )
27 lcmgcdnn 12084 . . . . . . 7  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) )  =  ( 3  x.  2 ) )
2827eqcomd 2183 . . . . . 6  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) ) )
2926, 28mp1i 10 . . . . 5  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) ) )
30 divmulap3 8636 . . . . 5  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )  =  ( 3 lcm  2 )  <-> 
( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) ) ) )
3129, 30mpbird 167 . . . 4  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( ( 3  x.  2 )  / 
( 3  gcd  2
) )  =  ( 3 lcm  2 ) )
3231eqcomd 2183 . . 3  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( 3 lcm  2 )  =  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) ) )
333, 8, 23, 32mp3an 1337 . 2  |-  ( 3 lcm  2 )  =  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )
34 gcdcom 11976 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3  gcd  2
)  =  ( 2  gcd  3 ) )
354, 5, 34mp2an 426 . . . 4  |-  ( 3  gcd  2 )  =  ( 2  gcd  3
)
36 1z 9281 . . . . . . . . 9  |-  1  e.  ZZ
37 gcdid 11989 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  gcd  1 )  =  ( abs `  1
) )
3836, 37ax-mp 5 . . . . . . . 8  |-  ( 1  gcd  1 )  =  ( abs `  1
)
39 abs1 11083 . . . . . . . 8  |-  ( abs `  1 )  =  1
4038, 39eqtr2i 2199 . . . . . . 7  |-  1  =  ( 1  gcd  1 )
41 gcdadd 11988 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  1  e.  ZZ )  ->  ( 1  gcd  1
)  =  ( 1  gcd  ( 1  +  1 ) ) )
4236, 36, 41mp2an 426 . . . . . . 7  |-  ( 1  gcd  1 )  =  ( 1  gcd  (
1  +  1 ) )
43 1p1e2 9038 . . . . . . . 8  |-  ( 1  +  1 )  =  2
4443oveq2i 5888 . . . . . . 7  |-  ( 1  gcd  ( 1  +  1 ) )  =  ( 1  gcd  2
)
4540, 42, 443eqtri 2202 . . . . . 6  |-  1  =  ( 1  gcd  2 )
46 gcdcom 11976 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  2  e.  ZZ )  ->  ( 1  gcd  2
)  =  ( 2  gcd  1 ) )
4736, 5, 46mp2an 426 . . . . . 6  |-  ( 1  gcd  2 )  =  ( 2  gcd  1
)
48 gcdadd 11988 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  ( 2  gcd  1
)  =  ( 2  gcd  ( 1  +  2 ) ) )
495, 36, 48mp2an 426 . . . . . 6  |-  ( 2  gcd  1 )  =  ( 2  gcd  (
1  +  2 ) )
5045, 47, 493eqtri 2202 . . . . 5  |-  1  =  ( 2  gcd  ( 1  +  2 ) )
51 1p2e3 9055 . . . . . 6  |-  ( 1  +  2 )  =  3
5251oveq2i 5888 . . . . 5  |-  ( 2  gcd  ( 1  +  2 ) )  =  ( 2  gcd  3
)
5350, 52eqtr2i 2199 . . . 4  |-  ( 2  gcd  3 )  =  1
5435, 53eqtri 2198 . . 3  |-  ( 3  gcd  2 )  =  1
5554oveq2i 5888 . 2  |-  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )  =  ( ( 3  x.  2 )  /  1
)
56 3t2e6 9077 . . . 4  |-  ( 3  x.  2 )  =  6
5756oveq1i 5887 . . 3  |-  ( ( 3  x.  2 )  /  1 )  =  ( 6  /  1
)
58 6cn 9003 . . . 4  |-  6  e.  CC
5958div1i 8699 . . 3  |-  ( 6  /  1 )  =  6
6057, 59eqtri 2198 . 2  |-  ( ( 3  x.  2 )  /  1 )  =  6
6133, 55, 603eqtri 2202 1  |-  ( 3 lcm  2 )  =  6
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818   # cap 8540    / cdiv 8631   NNcn 8921   2c2 8972   3c3 8973   6c6 8976   ZZcz 9255   abscabs 11008    gcd cgcd 11945   lcm clcm 12062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-lcm 12063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator