ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm Unicode version

Theorem 3lcm2e6woprm 12018
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm  |-  ( 3 lcm  2 )  =  6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 8932 . . . 4  |-  3  e.  CC
2 2cn 8928 . . . 4  |-  2  e.  CC
31, 2mulcli 7904 . . 3  |-  ( 3  x.  2 )  e.  CC
4 3z 9220 . . . 4  |-  3  e.  ZZ
5 2z 9219 . . . 4  |-  2  e.  ZZ
6 lcmcl 12004 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  NN0 )
76nn0cnd 9169 . . . 4  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  CC )
84, 5, 7mp2an 423 . . 3  |-  ( 3 lcm  2 )  e.  CC
94, 5pm3.2i 270 . . . . 5  |-  ( 3  e.  ZZ  /\  2  e.  ZZ )
10 2ne0 8949 . . . . . . 7  |-  2  =/=  0
1110neii 2338 . . . . . 6  |-  -.  2  =  0
1211intnan 919 . . . . 5  |-  -.  (
3  =  0  /\  2  =  0 )
13 gcdn0cl 11895 . . . . . 6  |-  ( ( ( 3  e.  ZZ  /\  2  e.  ZZ )  /\  -.  ( 3  =  0  /\  2  =  0 ) )  ->  ( 3  gcd  2 )  e.  NN )
1413nncnd 8871 . . . . 5  |-  ( ( ( 3  e.  ZZ  /\  2  e.  ZZ )  /\  -.  ( 3  =  0  /\  2  =  0 ) )  ->  ( 3  gcd  2 )  e.  CC )
159, 12, 14mp2an 423 . . . 4  |-  ( 3  gcd  2 )  e.  CC
169, 12, 13mp2an 423 . . . . . 6  |-  ( 3  gcd  2 )  e.  NN
1716nnne0i 8889 . . . . 5  |-  ( 3  gcd  2 )  =/=  0
1816nnzi 9212 . . . . . 6  |-  ( 3  gcd  2 )  e.  ZZ
19 0z 9202 . . . . . 6  |-  0  e.  ZZ
20 zapne 9265 . . . . . 6  |-  ( ( ( 3  gcd  2
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( 3  gcd  2 ) #  0  <->  (
3  gcd  2 )  =/=  0 ) )
2118, 19, 20mp2an 423 . . . . 5  |-  ( ( 3  gcd  2 ) #  0  <->  ( 3  gcd  2 )  =/=  0
)
2217, 21mpbir 145 . . . 4  |-  ( 3  gcd  2 ) #  0
2315, 22pm3.2i 270 . . 3  |-  ( ( 3  gcd  2 )  e.  CC  /\  (
3  gcd  2 ) #  0 )
24 3nn 9019 . . . . . . 7  |-  3  e.  NN
25 2nn 9018 . . . . . . 7  |-  2  e.  NN
2624, 25pm3.2i 270 . . . . . 6  |-  ( 3  e.  NN  /\  2  e.  NN )
27 lcmgcdnn 12014 . . . . . . 7  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) )  =  ( 3  x.  2 ) )
2827eqcomd 2171 . . . . . 6  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) ) )
2926, 28mp1i 10 . . . . 5  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) ) )
30 divmulap3 8573 . . . . 5  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )  =  ( 3 lcm  2 )  <-> 
( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) ) ) )
3129, 30mpbird 166 . . . 4  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( ( 3  x.  2 )  / 
( 3  gcd  2
) )  =  ( 3 lcm  2 ) )
3231eqcomd 2171 . . 3  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( 3 lcm  2 )  =  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) ) )
333, 8, 23, 32mp3an 1327 . 2  |-  ( 3 lcm  2 )  =  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )
34 gcdcom 11906 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3  gcd  2
)  =  ( 2  gcd  3 ) )
354, 5, 34mp2an 423 . . . 4  |-  ( 3  gcd  2 )  =  ( 2  gcd  3
)
36 1z 9217 . . . . . . . . 9  |-  1  e.  ZZ
37 gcdid 11919 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  gcd  1 )  =  ( abs `  1
) )
3836, 37ax-mp 5 . . . . . . . 8  |-  ( 1  gcd  1 )  =  ( abs `  1
)
39 abs1 11014 . . . . . . . 8  |-  ( abs `  1 )  =  1
4038, 39eqtr2i 2187 . . . . . . 7  |-  1  =  ( 1  gcd  1 )
41 gcdadd 11918 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  1  e.  ZZ )  ->  ( 1  gcd  1
)  =  ( 1  gcd  ( 1  +  1 ) ) )
4236, 36, 41mp2an 423 . . . . . . 7  |-  ( 1  gcd  1 )  =  ( 1  gcd  (
1  +  1 ) )
43 1p1e2 8974 . . . . . . . 8  |-  ( 1  +  1 )  =  2
4443oveq2i 5853 . . . . . . 7  |-  ( 1  gcd  ( 1  +  1 ) )  =  ( 1  gcd  2
)
4540, 42, 443eqtri 2190 . . . . . 6  |-  1  =  ( 1  gcd  2 )
46 gcdcom 11906 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  2  e.  ZZ )  ->  ( 1  gcd  2
)  =  ( 2  gcd  1 ) )
4736, 5, 46mp2an 423 . . . . . 6  |-  ( 1  gcd  2 )  =  ( 2  gcd  1
)
48 gcdadd 11918 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  ( 2  gcd  1
)  =  ( 2  gcd  ( 1  +  2 ) ) )
495, 36, 48mp2an 423 . . . . . 6  |-  ( 2  gcd  1 )  =  ( 2  gcd  (
1  +  2 ) )
5045, 47, 493eqtri 2190 . . . . 5  |-  1  =  ( 2  gcd  ( 1  +  2 ) )
51 1p2e3 8991 . . . . . 6  |-  ( 1  +  2 )  =  3
5251oveq2i 5853 . . . . 5  |-  ( 2  gcd  ( 1  +  2 ) )  =  ( 2  gcd  3
)
5350, 52eqtr2i 2187 . . . 4  |-  ( 2  gcd  3 )  =  1
5435, 53eqtri 2186 . . 3  |-  ( 3  gcd  2 )  =  1
5554oveq2i 5853 . 2  |-  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )  =  ( ( 3  x.  2 )  /  1
)
56 3t2e6 9013 . . . 4  |-  ( 3  x.  2 )  =  6
5756oveq1i 5852 . . 3  |-  ( ( 3  x.  2 )  /  1 )  =  ( 6  /  1
)
58 6cn 8939 . . . 4  |-  6  e.  CC
5958div1i 8636 . . 3  |-  ( 6  /  1 )  =  6
6057, 59eqtri 2186 . 2  |-  ( ( 3  x.  2 )  /  1 )  =  6
6133, 55, 603eqtri 2190 1  |-  ( 3 lcm  2 )  =  6
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   3c3 8909   6c6 8912   ZZcz 9191   abscabs 10939    gcd cgcd 11875   lcm clcm 11992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-lcm 11993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator