ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6lcm4e12 Unicode version

Theorem 6lcm4e12 12019
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12  |-  ( 6 lcm  4 )  = ; 1 2

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 8939 . . . 4  |-  6  e.  CC
2 4cn 8935 . . . 4  |-  4  e.  CC
31, 2mulcli 7904 . . 3  |-  ( 6  x.  4 )  e.  CC
4 6nn0 9135 . . . . 5  |-  6  e.  NN0
54nn0zi 9213 . . . 4  |-  6  e.  ZZ
6 4z 9221 . . . 4  |-  4  e.  ZZ
7 lcmcl 12004 . . . . 5  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6 lcm  4 )  e.  NN0 )
87nn0cnd 9169 . . . 4  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6 lcm  4 )  e.  CC )
95, 6, 8mp2an 423 . . 3  |-  ( 6 lcm  4 )  e.  CC
10 gcdcl 11899 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6  gcd  4
)  e.  NN0 )
1110nn0cnd 9169 . . . . 5  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6  gcd  4
)  e.  CC )
125, 6, 11mp2an 423 . . . 4  |-  ( 6  gcd  4 )  e.  CC
135, 6pm3.2i 270 . . . . . . 7  |-  ( 6  e.  ZZ  /\  4  e.  ZZ )
14 4ne0 8955 . . . . . . . . 9  |-  4  =/=  0
1514neii 2338 . . . . . . . 8  |-  -.  4  =  0
1615intnan 919 . . . . . . 7  |-  -.  (
6  =  0  /\  4  =  0 )
17 gcdn0cl 11895 . . . . . . 7  |-  ( ( ( 6  e.  ZZ  /\  4  e.  ZZ )  /\  -.  ( 6  =  0  /\  4  =  0 ) )  ->  ( 6  gcd  4 )  e.  NN )
1813, 16, 17mp2an 423 . . . . . 6  |-  ( 6  gcd  4 )  e.  NN
1918nnne0i 8889 . . . . 5  |-  ( 6  gcd  4 )  =/=  0
2018nnzi 9212 . . . . . 6  |-  ( 6  gcd  4 )  e.  ZZ
21 0z 9202 . . . . . 6  |-  0  e.  ZZ
22 zapne 9265 . . . . . 6  |-  ( ( ( 6  gcd  4
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( 6  gcd  4 ) #  0  <->  (
6  gcd  4 )  =/=  0 ) )
2320, 21, 22mp2an 423 . . . . 5  |-  ( ( 6  gcd  4 ) #  0  <->  ( 6  gcd  4 )  =/=  0
)
2419, 23mpbir 145 . . . 4  |-  ( 6  gcd  4 ) #  0
2512, 24pm3.2i 270 . . 3  |-  ( ( 6  gcd  4 )  e.  CC  /\  (
6  gcd  4 ) #  0 )
26 6nn 9022 . . . . . . . 8  |-  6  e.  NN
27 4nn 9020 . . . . . . . 8  |-  4  e.  NN
2826, 27pm3.2i 270 . . . . . . 7  |-  ( 6  e.  NN  /\  4  e.  NN )
29 lcmgcdnn 12014 . . . . . . 7  |-  ( ( 6  e.  NN  /\  4  e.  NN )  ->  ( ( 6 lcm  4 )  x.  ( 6  gcd  4 ) )  =  ( 6  x.  4 ) )
3028, 29mp1i 10 . . . . . 6  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( 6 lcm  4 )  x.  (
6  gcd  4 ) )  =  ( 6  x.  4 ) )
3130eqcomd 2171 . . . . 5  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( 6  x.  4 )  =  ( ( 6 lcm  4 )  x.  ( 6  gcd  4 ) ) )
32 divmulap3 8573 . . . . 5  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )  =  ( 6 lcm  4 )  <-> 
( 6  x.  4 )  =  ( ( 6 lcm  4 )  x.  ( 6  gcd  4
) ) ) )
3331, 32mpbird 166 . . . 4  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( 6  x.  4 )  / 
( 6  gcd  4
) )  =  ( 6 lcm  4 ) )
3433eqcomd 2171 . . 3  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( 6 lcm  4 )  =  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) ) )
353, 9, 25, 34mp3an 1327 . 2  |-  ( 6 lcm  4 )  =  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )
36 6gcd4e2 11928 . . 3  |-  ( 6  gcd  4 )  =  2
3736oveq2i 5853 . 2  |-  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )  =  ( ( 6  x.  4 )  /  2
)
38 2cn 8928 . . . 4  |-  2  e.  CC
39 2ap0 8950 . . . 4  |-  2 #  0
401, 2, 38, 39divassapi 8664 . . 3  |-  ( ( 6  x.  4 )  /  2 )  =  ( 6  x.  (
4  /  2 ) )
41 4d2e2 9017 . . . 4  |-  ( 4  /  2 )  =  2
4241oveq2i 5853 . . 3  |-  ( 6  x.  ( 4  / 
2 ) )  =  ( 6  x.  2 )
43 6t2e12 9425 . . 3  |-  ( 6  x.  2 )  = ; 1
2
4440, 42, 433eqtri 2190 . 2  |-  ( ( 6  x.  4 )  /  2 )  = ; 1
2
4535, 37, 443eqtri 2190 1  |-  ( 6 lcm  4 )  = ; 1 2
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    x. cmul 7758   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   4c4 8910   6c6 8912   ZZcz 9191  ;cdc 9322    gcd cgcd 11875   lcm clcm 11992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-dec 9323  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-lcm 11993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator