ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6lcm4e12 Unicode version

Theorem 6lcm4e12 12228
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12  |-  ( 6 lcm  4 )  = ; 1 2

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 9066 . . . 4  |-  6  e.  CC
2 4cn 9062 . . . 4  |-  4  e.  CC
31, 2mulcli 8026 . . 3  |-  ( 6  x.  4 )  e.  CC
4 6nn0 9264 . . . . 5  |-  6  e.  NN0
54nn0zi 9342 . . . 4  |-  6  e.  ZZ
6 4z 9350 . . . 4  |-  4  e.  ZZ
7 lcmcl 12213 . . . . 5  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6 lcm  4 )  e.  NN0 )
87nn0cnd 9298 . . . 4  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6 lcm  4 )  e.  CC )
95, 6, 8mp2an 426 . . 3  |-  ( 6 lcm  4 )  e.  CC
10 gcdcl 12106 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6  gcd  4
)  e.  NN0 )
1110nn0cnd 9298 . . . . 5  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6  gcd  4
)  e.  CC )
125, 6, 11mp2an 426 . . . 4  |-  ( 6  gcd  4 )  e.  CC
135, 6pm3.2i 272 . . . . . . 7  |-  ( 6  e.  ZZ  /\  4  e.  ZZ )
14 4ne0 9082 . . . . . . . . 9  |-  4  =/=  0
1514neii 2366 . . . . . . . 8  |-  -.  4  =  0
1615intnan 930 . . . . . . 7  |-  -.  (
6  =  0  /\  4  =  0 )
17 gcdn0cl 12102 . . . . . . 7  |-  ( ( ( 6  e.  ZZ  /\  4  e.  ZZ )  /\  -.  ( 6  =  0  /\  4  =  0 ) )  ->  ( 6  gcd  4 )  e.  NN )
1813, 16, 17mp2an 426 . . . . . 6  |-  ( 6  gcd  4 )  e.  NN
1918nnne0i 9016 . . . . 5  |-  ( 6  gcd  4 )  =/=  0
2018nnzi 9341 . . . . . 6  |-  ( 6  gcd  4 )  e.  ZZ
21 0z 9331 . . . . . 6  |-  0  e.  ZZ
22 zapne 9394 . . . . . 6  |-  ( ( ( 6  gcd  4
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( 6  gcd  4 ) #  0  <->  (
6  gcd  4 )  =/=  0 ) )
2320, 21, 22mp2an 426 . . . . 5  |-  ( ( 6  gcd  4 ) #  0  <->  ( 6  gcd  4 )  =/=  0
)
2419, 23mpbir 146 . . . 4  |-  ( 6  gcd  4 ) #  0
2512, 24pm3.2i 272 . . 3  |-  ( ( 6  gcd  4 )  e.  CC  /\  (
6  gcd  4 ) #  0 )
26 6nn 9150 . . . . . . . 8  |-  6  e.  NN
27 4nn 9148 . . . . . . . 8  |-  4  e.  NN
2826, 27pm3.2i 272 . . . . . . 7  |-  ( 6  e.  NN  /\  4  e.  NN )
29 lcmgcdnn 12223 . . . . . . 7  |-  ( ( 6  e.  NN  /\  4  e.  NN )  ->  ( ( 6 lcm  4 )  x.  ( 6  gcd  4 ) )  =  ( 6  x.  4 ) )
3028, 29mp1i 10 . . . . . 6  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( 6 lcm  4 )  x.  (
6  gcd  4 ) )  =  ( 6  x.  4 ) )
3130eqcomd 2199 . . . . 5  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( 6  x.  4 )  =  ( ( 6 lcm  4 )  x.  ( 6  gcd  4 ) ) )
32 divmulap3 8698 . . . . 5  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )  =  ( 6 lcm  4 )  <-> 
( 6  x.  4 )  =  ( ( 6 lcm  4 )  x.  ( 6  gcd  4
) ) ) )
3331, 32mpbird 167 . . . 4  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( 6  x.  4 )  / 
( 6  gcd  4
) )  =  ( 6 lcm  4 ) )
3433eqcomd 2199 . . 3  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( 6 lcm  4 )  =  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) ) )
353, 9, 25, 34mp3an 1348 . 2  |-  ( 6 lcm  4 )  =  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )
36 6gcd4e2 12135 . . 3  |-  ( 6  gcd  4 )  =  2
3736oveq2i 5930 . 2  |-  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )  =  ( ( 6  x.  4 )  /  2
)
38 2cn 9055 . . . 4  |-  2  e.  CC
39 2ap0 9077 . . . 4  |-  2 #  0
401, 2, 38, 39divassapi 8789 . . 3  |-  ( ( 6  x.  4 )  /  2 )  =  ( 6  x.  (
4  /  2 ) )
41 4d2e2 9145 . . . 4  |-  ( 4  /  2 )  =  2
4241oveq2i 5930 . . 3  |-  ( 6  x.  ( 4  / 
2 ) )  =  ( 6  x.  2 )
43 6t2e12 9554 . . 3  |-  ( 6  x.  2 )  = ; 1
2
4440, 42, 433eqtri 2218 . 2  |-  ( ( 6  x.  4 )  /  2 )  = ; 1
2
4535, 37, 443eqtri 2218 1  |-  ( 6 lcm  4 )  = ; 1 2
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4030  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    x. cmul 7879   # cap 8602    / cdiv 8693   NNcn 8984   2c2 9035   4c4 9037   6c6 9039   ZZcz 9320  ;cdc 9451    gcd cgcd 12082   lcm clcm 12201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083  df-lcm 12202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator