ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6lcm4e12 Unicode version

Theorem 6lcm4e12 11779
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12  |-  ( 6 lcm  4 )  = ; 1 2

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 8814 . . . 4  |-  6  e.  CC
2 4cn 8810 . . . 4  |-  4  e.  CC
31, 2mulcli 7783 . . 3  |-  ( 6  x.  4 )  e.  CC
4 6nn0 9010 . . . . 5  |-  6  e.  NN0
54nn0zi 9088 . . . 4  |-  6  e.  ZZ
6 4z 9096 . . . 4  |-  4  e.  ZZ
7 lcmcl 11764 . . . . 5  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6 lcm  4 )  e.  NN0 )
87nn0cnd 9044 . . . 4  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6 lcm  4 )  e.  CC )
95, 6, 8mp2an 422 . . 3  |-  ( 6 lcm  4 )  e.  CC
10 gcdcl 11666 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6  gcd  4
)  e.  NN0 )
1110nn0cnd 9044 . . . . 5  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6  gcd  4
)  e.  CC )
125, 6, 11mp2an 422 . . . 4  |-  ( 6  gcd  4 )  e.  CC
135, 6pm3.2i 270 . . . . . . 7  |-  ( 6  e.  ZZ  /\  4  e.  ZZ )
14 4ne0 8830 . . . . . . . . 9  |-  4  =/=  0
1514neii 2310 . . . . . . . 8  |-  -.  4  =  0
1615intnan 914 . . . . . . 7  |-  -.  (
6  =  0  /\  4  =  0 )
17 gcdn0cl 11662 . . . . . . 7  |-  ( ( ( 6  e.  ZZ  /\  4  e.  ZZ )  /\  -.  ( 6  =  0  /\  4  =  0 ) )  ->  ( 6  gcd  4 )  e.  NN )
1813, 16, 17mp2an 422 . . . . . 6  |-  ( 6  gcd  4 )  e.  NN
1918nnne0i 8764 . . . . 5  |-  ( 6  gcd  4 )  =/=  0
2018nnzi 9087 . . . . . 6  |-  ( 6  gcd  4 )  e.  ZZ
21 0z 9077 . . . . . 6  |-  0  e.  ZZ
22 zapne 9137 . . . . . 6  |-  ( ( ( 6  gcd  4
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( 6  gcd  4 ) #  0  <->  (
6  gcd  4 )  =/=  0 ) )
2320, 21, 22mp2an 422 . . . . 5  |-  ( ( 6  gcd  4 ) #  0  <->  ( 6  gcd  4 )  =/=  0
)
2419, 23mpbir 145 . . . 4  |-  ( 6  gcd  4 ) #  0
2512, 24pm3.2i 270 . . 3  |-  ( ( 6  gcd  4 )  e.  CC  /\  (
6  gcd  4 ) #  0 )
26 6nn 8897 . . . . . . . 8  |-  6  e.  NN
27 4nn 8895 . . . . . . . 8  |-  4  e.  NN
2826, 27pm3.2i 270 . . . . . . 7  |-  ( 6  e.  NN  /\  4  e.  NN )
29 lcmgcdnn 11774 . . . . . . 7  |-  ( ( 6  e.  NN  /\  4  e.  NN )  ->  ( ( 6 lcm  4 )  x.  ( 6  gcd  4 ) )  =  ( 6  x.  4 ) )
3028, 29mp1i 10 . . . . . 6  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( 6 lcm  4 )  x.  (
6  gcd  4 ) )  =  ( 6  x.  4 ) )
3130eqcomd 2145 . . . . 5  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( 6  x.  4 )  =  ( ( 6 lcm  4 )  x.  ( 6  gcd  4 ) ) )
32 divmulap3 8449 . . . . 5  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )  =  ( 6 lcm  4 )  <-> 
( 6  x.  4 )  =  ( ( 6 lcm  4 )  x.  ( 6  gcd  4
) ) ) )
3331, 32mpbird 166 . . . 4  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( 6  x.  4 )  / 
( 6  gcd  4
) )  =  ( 6 lcm  4 ) )
3433eqcomd 2145 . . 3  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( 6 lcm  4 )  =  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) ) )
353, 9, 25, 34mp3an 1315 . 2  |-  ( 6 lcm  4 )  =  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )
36 6gcd4e2 11694 . . 3  |-  ( 6  gcd  4 )  =  2
3736oveq2i 5785 . 2  |-  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )  =  ( ( 6  x.  4 )  /  2
)
38 2cn 8803 . . . 4  |-  2  e.  CC
39 2ap0 8825 . . . 4  |-  2 #  0
401, 2, 38, 39divassapi 8540 . . 3  |-  ( ( 6  x.  4 )  /  2 )  =  ( 6  x.  (
4  /  2 ) )
41 4d2e2 8892 . . . 4  |-  ( 4  /  2 )  =  2
4241oveq2i 5785 . . 3  |-  ( 6  x.  ( 4  / 
2 ) )  =  ( 6  x.  2 )
43 6t2e12 9297 . . 3  |-  ( 6  x.  2 )  = ; 1
2
4440, 42, 433eqtri 2164 . 2  |-  ( ( 6  x.  4 )  /  2 )  = ; 1
2
4535, 37, 443eqtri 2164 1  |-  ( 6 lcm  4 )  = ; 1 2
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2308   class class class wbr 3929  (class class class)co 5774   CCcc 7630   0cc0 7632   1c1 7633    x. cmul 7637   # cap 8355    / cdiv 8444   NNcn 8732   2c2 8783   4c4 8785   6c6 8787   ZZcz 9066  ;cdc 9194    gcd cgcd 11646   lcm clcm 11752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-5 8794  df-6 8795  df-7 8796  df-8 8797  df-9 8798  df-n0 8990  df-z 9067  df-dec 9195  df-uz 9339  df-q 9424  df-rp 9454  df-fz 9803  df-fzo 9932  df-fl 10055  df-mod 10108  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-dvds 11505  df-gcd 11647  df-lcm 11753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator