ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6lcm4e12 Unicode version

Theorem 6lcm4e12 12030
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12  |-  ( 6 lcm  4 )  = ; 1 2

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 8949 . . . 4  |-  6  e.  CC
2 4cn 8945 . . . 4  |-  4  e.  CC
31, 2mulcli 7914 . . 3  |-  ( 6  x.  4 )  e.  CC
4 6nn0 9145 . . . . 5  |-  6  e.  NN0
54nn0zi 9223 . . . 4  |-  6  e.  ZZ
6 4z 9231 . . . 4  |-  4  e.  ZZ
7 lcmcl 12015 . . . . 5  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6 lcm  4 )  e.  NN0 )
87nn0cnd 9179 . . . 4  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6 lcm  4 )  e.  CC )
95, 6, 8mp2an 424 . . 3  |-  ( 6 lcm  4 )  e.  CC
10 gcdcl 11910 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6  gcd  4
)  e.  NN0 )
1110nn0cnd 9179 . . . . 5  |-  ( ( 6  e.  ZZ  /\  4  e.  ZZ )  ->  ( 6  gcd  4
)  e.  CC )
125, 6, 11mp2an 424 . . . 4  |-  ( 6  gcd  4 )  e.  CC
135, 6pm3.2i 270 . . . . . . 7  |-  ( 6  e.  ZZ  /\  4  e.  ZZ )
14 4ne0 8965 . . . . . . . . 9  |-  4  =/=  0
1514neii 2342 . . . . . . . 8  |-  -.  4  =  0
1615intnan 924 . . . . . . 7  |-  -.  (
6  =  0  /\  4  =  0 )
17 gcdn0cl 11906 . . . . . . 7  |-  ( ( ( 6  e.  ZZ  /\  4  e.  ZZ )  /\  -.  ( 6  =  0  /\  4  =  0 ) )  ->  ( 6  gcd  4 )  e.  NN )
1813, 16, 17mp2an 424 . . . . . 6  |-  ( 6  gcd  4 )  e.  NN
1918nnne0i 8899 . . . . 5  |-  ( 6  gcd  4 )  =/=  0
2018nnzi 9222 . . . . . 6  |-  ( 6  gcd  4 )  e.  ZZ
21 0z 9212 . . . . . 6  |-  0  e.  ZZ
22 zapne 9275 . . . . . 6  |-  ( ( ( 6  gcd  4
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( 6  gcd  4 ) #  0  <->  (
6  gcd  4 )  =/=  0 ) )
2320, 21, 22mp2an 424 . . . . 5  |-  ( ( 6  gcd  4 ) #  0  <->  ( 6  gcd  4 )  =/=  0
)
2419, 23mpbir 145 . . . 4  |-  ( 6  gcd  4 ) #  0
2512, 24pm3.2i 270 . . 3  |-  ( ( 6  gcd  4 )  e.  CC  /\  (
6  gcd  4 ) #  0 )
26 6nn 9032 . . . . . . . 8  |-  6  e.  NN
27 4nn 9030 . . . . . . . 8  |-  4  e.  NN
2826, 27pm3.2i 270 . . . . . . 7  |-  ( 6  e.  NN  /\  4  e.  NN )
29 lcmgcdnn 12025 . . . . . . 7  |-  ( ( 6  e.  NN  /\  4  e.  NN )  ->  ( ( 6 lcm  4 )  x.  ( 6  gcd  4 ) )  =  ( 6  x.  4 ) )
3028, 29mp1i 10 . . . . . 6  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( 6 lcm  4 )  x.  (
6  gcd  4 ) )  =  ( 6  x.  4 ) )
3130eqcomd 2176 . . . . 5  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( 6  x.  4 )  =  ( ( 6 lcm  4 )  x.  ( 6  gcd  4 ) ) )
32 divmulap3 8583 . . . . 5  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )  =  ( 6 lcm  4 )  <-> 
( 6  x.  4 )  =  ( ( 6 lcm  4 )  x.  ( 6  gcd  4
) ) ) )
3331, 32mpbird 166 . . . 4  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( ( 6  x.  4 )  / 
( 6  gcd  4
) )  =  ( 6 lcm  4 ) )
3433eqcomd 2176 . . 3  |-  ( ( ( 6  x.  4 )  e.  CC  /\  ( 6 lcm  4 )  e.  CC  /\  (
( 6  gcd  4
)  e.  CC  /\  ( 6  gcd  4
) #  0 ) )  ->  ( 6 lcm  4 )  =  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) ) )
353, 9, 25, 34mp3an 1332 . 2  |-  ( 6 lcm  4 )  =  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )
36 6gcd4e2 11939 . . 3  |-  ( 6  gcd  4 )  =  2
3736oveq2i 5862 . 2  |-  ( ( 6  x.  4 )  /  ( 6  gcd  4 ) )  =  ( ( 6  x.  4 )  /  2
)
38 2cn 8938 . . . 4  |-  2  e.  CC
39 2ap0 8960 . . . 4  |-  2 #  0
401, 2, 38, 39divassapi 8674 . . 3  |-  ( ( 6  x.  4 )  /  2 )  =  ( 6  x.  (
4  /  2 ) )
41 4d2e2 9027 . . . 4  |-  ( 4  /  2 )  =  2
4241oveq2i 5862 . . 3  |-  ( 6  x.  ( 4  / 
2 ) )  =  ( 6  x.  2 )
43 6t2e12 9435 . . 3  |-  ( 6  x.  2 )  = ; 1
2
4440, 42, 433eqtri 2195 . 2  |-  ( ( 6  x.  4 )  /  2 )  = ; 1
2
4535, 37, 443eqtri 2195 1  |-  ( 6 lcm  4 )  = ; 1 2
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3987  (class class class)co 5851   CCcc 7761   0cc0 7763   1c1 7764    x. cmul 7768   # cap 8489    / cdiv 8578   NNcn 8867   2c2 8918   4c4 8920   6c6 8922   ZZcz 9201  ;cdc 9332    gcd cgcd 11886   lcm clcm 12003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-sup 6958  df-inf 6959  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-5 8929  df-6 8930  df-7 8931  df-8 8932  df-9 8933  df-n0 9125  df-z 9202  df-dec 9333  df-uz 9477  df-q 9568  df-rp 9600  df-fz 9955  df-fzo 10088  df-fl 10215  df-mod 10268  df-seqfrec 10391  df-exp 10465  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-dvds 11739  df-gcd 11887  df-lcm 12004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator