ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 Unicode version

Theorem rab0 3497
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0  |-  { x  e.  (/)  |  ph }  =  (/)

Proof of Theorem rab0
StepHypRef Expression
1 noel 3472 . . . . 5  |-  -.  x  e.  (/)
21intnanr 932 . . . 4  |-  -.  (
x  e.  (/)  /\  ph )
3 equid 1725 . . . . 5  |-  x  =  x
43notnoti 646 . . . 4  |-  -.  -.  x  =  x
52, 42false 703 . . 3  |-  ( ( x  e.  (/)  /\  ph ) 
<->  -.  x  =  x )
65abbii 2323 . 2  |-  { x  |  ( x  e.  (/)  /\  ph ) }  =  { x  |  -.  x  =  x }
7 df-rab 2495 . 2  |-  { x  e.  (/)  |  ph }  =  { x  |  ( x  e.  (/)  /\  ph ) }
8 dfnul2 3470 . 2  |-  (/)  =  {
x  |  -.  x  =  x }
96, 7, 83eqtr4i 2238 1  |-  { x  e.  (/)  |  ph }  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   {crab 2490   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by:  ssfirab  7059  sup00  7131
  Copyright terms: Public domain W3C validator