Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rab0 | Unicode version |
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
rab0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3394 | . . . . 5 | |
2 | 1 | intnanr 916 | . . . 4 |
3 | equid 1678 | . . . . 5 | |
4 | 3 | notnoti 635 | . . . 4 |
5 | 2, 4 | 2false 691 | . . 3 |
6 | 5 | abbii 2270 | . 2 |
7 | df-rab 2441 | . 2 | |
8 | dfnul2 3392 | . 2 | |
9 | 6, 7, 8 | 3eqtr4i 2185 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wceq 1332 wcel 2125 cab 2140 crab 2436 c0 3390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rab 2441 df-v 2711 df-dif 3100 df-nul 3391 |
This theorem is referenced by: ssfirab 6867 sup00 6935 |
Copyright terms: Public domain | W3C validator |