ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 Unicode version

Theorem rab0 3443
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0  |-  { x  e.  (/)  |  ph }  =  (/)

Proof of Theorem rab0
StepHypRef Expression
1 noel 3418 . . . . 5  |-  -.  x  e.  (/)
21intnanr 925 . . . 4  |-  -.  (
x  e.  (/)  /\  ph )
3 equid 1694 . . . . 5  |-  x  =  x
43notnoti 640 . . . 4  |-  -.  -.  x  =  x
52, 42false 696 . . 3  |-  ( ( x  e.  (/)  /\  ph ) 
<->  -.  x  =  x )
65abbii 2286 . 2  |-  { x  |  ( x  e.  (/)  /\  ph ) }  =  { x  |  -.  x  =  x }
7 df-rab 2457 . 2  |-  { x  e.  (/)  |  ph }  =  { x  |  ( x  e.  (/)  /\  ph ) }
8 dfnul2 3416 . 2  |-  (/)  =  {
x  |  -.  x  =  x }
96, 7, 83eqtr4i 2201 1  |-  { x  e.  (/)  |  ph }  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   {crab 2452   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by:  ssfirab  6911  sup00  6980
  Copyright terms: Public domain W3C validator