ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnlt Unicode version

Theorem pnfnlt 9911
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
pnfnlt  |-  ( A  e.  RR*  ->  -. +oo  <  A )

Proof of Theorem pnfnlt
StepHypRef Expression
1 pnfnre 8116 . . . . . . 7  |- +oo  e/  RR
21neli 2473 . . . . . 6  |-  -. +oo  e.  RR
32intnanr 932 . . . . 5  |-  -.  ( +oo  e.  RR  /\  A  e.  RR )
43intnanr 932 . . . 4  |-  -.  (
( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )
5 pnfnemnf 8129 . . . . . 6  |- +oo  =/= -oo
65neii 2378 . . . . 5  |-  -. +oo  = -oo
76intnanr 932 . . . 4  |-  -.  ( +oo  = -oo  /\  A  = +oo )
84, 7pm3.2ni 815 . . 3  |-  -.  (
( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )
92intnanr 932 . . . 4  |-  -.  ( +oo  e.  RR  /\  A  = +oo )
106intnanr 932 . . . 4  |-  -.  ( +oo  = -oo  /\  A  e.  RR )
119, 10pm3.2ni 815 . . 3  |-  -.  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) )
128, 11pm3.2ni 815 . 2  |-  -.  (
( ( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  ( ( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) )
13 pnfxr 8127 . . 3  |- +oo  e.  RR*
14 ltxr 9899 . . 3  |-  ( ( +oo  e.  RR*  /\  A  e.  RR* )  ->  ( +oo  <  A  <->  ( (
( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) ) ) )
1513, 14mpan 424 . 2  |-  ( A  e.  RR*  ->  ( +oo  <  A  <->  ( ( ( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) ) ) )
1612, 15mtbiri 677 1  |-  ( A  e.  RR*  ->  -. +oo  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   class class class wbr 4045   RRcr 7926    <RR cltrr 7931   +oocpnf 8106   -oocmnf 8107   RR*cxr 8108    < clt 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114
This theorem is referenced by:  pnfge  9913  xrltnsym  9917  xrlttr  9919  xrltso  9920  xltnegi  9959  xposdif  10006  qbtwnxr  10402  xqltnle  10412  xrmaxiflemab  11591  xrmaxltsup  11602
  Copyright terms: Public domain W3C validator