| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfnlt | Unicode version | ||
| Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8068 |
. . . . . . 7
| |
| 2 | 1 | neli 2464 |
. . . . . 6
|
| 3 | 2 | intnanr 931 |
. . . . 5
|
| 4 | 3 | intnanr 931 |
. . . 4
|
| 5 | pnfnemnf 8081 |
. . . . . 6
| |
| 6 | 5 | neii 2369 |
. . . . 5
|
| 7 | 6 | intnanr 931 |
. . . 4
|
| 8 | 4, 7 | pm3.2ni 814 |
. . 3
|
| 9 | 2 | intnanr 931 |
. . . 4
|
| 10 | 6 | intnanr 931 |
. . . 4
|
| 11 | 9, 10 | pm3.2ni 814 |
. . 3
|
| 12 | 8, 11 | pm3.2ni 814 |
. 2
|
| 13 | pnfxr 8079 |
. . 3
| |
| 14 | ltxr 9850 |
. . 3
| |
| 15 | 13, 14 | mpan 424 |
. 2
|
| 16 | 12, 15 | mtbiri 676 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 |
| This theorem is referenced by: pnfge 9864 xrltnsym 9868 xrlttr 9870 xrltso 9871 xltnegi 9910 xposdif 9957 qbtwnxr 10347 xqltnle 10357 xrmaxiflemab 11412 xrmaxltsup 11423 |
| Copyright terms: Public domain | W3C validator |