ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnlt Unicode version

Theorem pnfnlt 9862
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
pnfnlt  |-  ( A  e.  RR*  ->  -. +oo  <  A )

Proof of Theorem pnfnlt
StepHypRef Expression
1 pnfnre 8068 . . . . . . 7  |- +oo  e/  RR
21neli 2464 . . . . . 6  |-  -. +oo  e.  RR
32intnanr 931 . . . . 5  |-  -.  ( +oo  e.  RR  /\  A  e.  RR )
43intnanr 931 . . . 4  |-  -.  (
( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )
5 pnfnemnf 8081 . . . . . 6  |- +oo  =/= -oo
65neii 2369 . . . . 5  |-  -. +oo  = -oo
76intnanr 931 . . . 4  |-  -.  ( +oo  = -oo  /\  A  = +oo )
84, 7pm3.2ni 814 . . 3  |-  -.  (
( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )
92intnanr 931 . . . 4  |-  -.  ( +oo  e.  RR  /\  A  = +oo )
106intnanr 931 . . . 4  |-  -.  ( +oo  = -oo  /\  A  e.  RR )
119, 10pm3.2ni 814 . . 3  |-  -.  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) )
128, 11pm3.2ni 814 . 2  |-  -.  (
( ( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  ( ( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) )
13 pnfxr 8079 . . 3  |- +oo  e.  RR*
14 ltxr 9850 . . 3  |-  ( ( +oo  e.  RR*  /\  A  e.  RR* )  ->  ( +oo  <  A  <->  ( (
( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) ) ) )
1513, 14mpan 424 . 2  |-  ( A  e.  RR*  ->  ( +oo  <  A  <->  ( ( ( ( +oo  e.  RR  /\  A  e.  RR )  /\ +oo  <RR  A )  \/  ( +oo  = -oo  /\  A  = +oo ) )  \/  (
( +oo  e.  RR  /\  A  = +oo )  \/  ( +oo  = -oo  /\  A  e.  RR ) ) ) ) )
1612, 15mtbiri 676 1  |-  ( A  e.  RR*  ->  -. +oo  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4033   RRcr 7878    <RR cltrr 7883   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060    < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066
This theorem is referenced by:  pnfge  9864  xrltnsym  9868  xrlttr  9870  xrltso  9871  xltnegi  9910  xposdif  9957  qbtwnxr  10347  xqltnle  10357  xrmaxiflemab  11412  xrmaxltsup  11423
  Copyright terms: Public domain W3C validator