ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq3 Unicode version

Theorem isoeq3 5780
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq3  |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  T  ( A ,  B ) ) )

Proof of Theorem isoeq3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3989 . . . . 5  |-  ( S  =  T  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) T ( H `  y ) ) )
21bibi2d 231 . . . 4  |-  ( S  =  T  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
322ralbidv 2494 . . 3  |-  ( S  =  T  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
43anbi2d 461 . 2  |-  ( S  =  T  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) T ( H `  y ) ) ) ) )
5 df-isom 5205 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
6 df-isom 5205 . 2  |-  ( H 
Isom  R ,  T  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
74, 5, 63bitr4g 222 1  |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  T  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   A.wral 2448   class class class wbr 3987   -1-1-onto->wf1o 5195   ` cfv 5196    Isom wiso 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166  df-ral 2453  df-br 3988  df-isom 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator