ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-isom Unicode version

Definition df-isom 5299
Description: Define the isomorphism predicate. We read this as "
H is an  R,  S isomorphism of  A onto  B". Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y    x, S, y   
x, H, y

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cR . . 3  class  R
4 cS . . 3  class  S
5 cH . . 3  class  H
61, 2, 3, 4, 5wiso 5291 . 2  wff  H  Isom  R ,  S  ( A ,  B )
71, 2, 5wf1o 5289 . . 3  wff  H : A
-1-1-onto-> B
8 vx . . . . . . . 8  setvar  x
98cv 1372 . . . . . . 7  class  x
10 vy . . . . . . . 8  setvar  y
1110cv 1372 . . . . . . 7  class  y
129, 11, 3wbr 4059 . . . . . 6  wff  x R y
139, 5cfv 5290 . . . . . . 7  class  ( H `
 x )
1411, 5cfv 5290 . . . . . . 7  class  ( H `
 y )
1513, 14, 4wbr 4059 . . . . . 6  wff  ( H `
 x ) S ( H `  y
)
1612, 15wb 105 . . . . 5  wff  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1716, 10, 1wral 2486 . . . 4  wff  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1817, 8, 1wral 2486 . . 3  wff  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
197, 18wa 104 . 2  wff  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
206, 19wb 105 1  wff  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  isoeq1  5893  isoeq2  5894  isoeq3  5895  isoeq4  5896  isoeq5  5897  nfiso  5898  isof1o  5899  isorel  5900  isoid  5902  isocnv  5903  isocnv2  5904  isores2  5905  isores3  5907  isotr  5908  iso0  5909  isoini2  5911  f1oiso  5918  negiso  9063  frec2uzisod  10589  zfz1isolem1  11022  xrnegiso  11688  reefiso  15364  logltb  15461
  Copyright terms: Public domain W3C validator