ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-isom Unicode version

Definition df-isom 5225
Description: Define the isomorphism predicate. We read this as "
H is an  R,  S isomorphism of  A onto  B". Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y    x, S, y   
x, H, y

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cR . . 3  class  R
4 cS . . 3  class  S
5 cH . . 3  class  H
61, 2, 3, 4, 5wiso 5217 . 2  wff  H  Isom  R ,  S  ( A ,  B )
71, 2, 5wf1o 5215 . . 3  wff  H : A
-1-1-onto-> B
8 vx . . . . . . . 8  setvar  x
98cv 1352 . . . . . . 7  class  x
10 vy . . . . . . . 8  setvar  y
1110cv 1352 . . . . . . 7  class  y
129, 11, 3wbr 4003 . . . . . 6  wff  x R y
139, 5cfv 5216 . . . . . . 7  class  ( H `
 x )
1411, 5cfv 5216 . . . . . . 7  class  ( H `
 y )
1513, 14, 4wbr 4003 . . . . . 6  wff  ( H `
 x ) S ( H `  y
)
1612, 15wb 105 . . . . 5  wff  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1716, 10, 1wral 2455 . . . 4  wff  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1817, 8, 1wral 2455 . . 3  wff  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
197, 18wa 104 . 2  wff  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
206, 19wb 105 1  wff  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  isoeq1  5801  isoeq2  5802  isoeq3  5803  isoeq4  5804  isoeq5  5805  nfiso  5806  isof1o  5807  isorel  5808  isoid  5810  isocnv  5811  isocnv2  5812  isores2  5813  isores3  5815  isotr  5816  iso0  5817  isoini2  5819  f1oiso  5826  negiso  8911  frec2uzisod  10406  zfz1isolem1  10819  xrnegiso  11269  reefiso  14168  logltb  14265
  Copyright terms: Public domain W3C validator