ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-isom Unicode version

Definition df-isom 5263
Description: Define the isomorphism predicate. We read this as "
H is an  R,  S isomorphism of  A onto  B". Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y    x, S, y   
x, H, y

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cR . . 3  class  R
4 cS . . 3  class  S
5 cH . . 3  class  H
61, 2, 3, 4, 5wiso 5255 . 2  wff  H  Isom  R ,  S  ( A ,  B )
71, 2, 5wf1o 5253 . . 3  wff  H : A
-1-1-onto-> B
8 vx . . . . . . . 8  setvar  x
98cv 1363 . . . . . . 7  class  x
10 vy . . . . . . . 8  setvar  y
1110cv 1363 . . . . . . 7  class  y
129, 11, 3wbr 4029 . . . . . 6  wff  x R y
139, 5cfv 5254 . . . . . . 7  class  ( H `
 x )
1411, 5cfv 5254 . . . . . . 7  class  ( H `
 y )
1513, 14, 4wbr 4029 . . . . . 6  wff  ( H `
 x ) S ( H `  y
)
1612, 15wb 105 . . . . 5  wff  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1716, 10, 1wral 2472 . . . 4  wff  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1817, 8, 1wral 2472 . . 3  wff  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
197, 18wa 104 . 2  wff  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
206, 19wb 105 1  wff  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  isoeq1  5844  isoeq2  5845  isoeq3  5846  isoeq4  5847  isoeq5  5848  nfiso  5849  isof1o  5850  isorel  5851  isoid  5853  isocnv  5854  isocnv2  5855  isores2  5856  isores3  5858  isotr  5859  iso0  5860  isoini2  5862  f1oiso  5869  negiso  8974  frec2uzisod  10478  zfz1isolem1  10911  xrnegiso  11405  reefiso  14912  logltb  15009
  Copyright terms: Public domain W3C validator