ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-isom Unicode version

Definition df-isom 5264
Description: Define the isomorphism predicate. We read this as "
H is an  R,  S isomorphism of  A onto  B". Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y    x, S, y   
x, H, y

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cR . . 3  class  R
4 cS . . 3  class  S
5 cH . . 3  class  H
61, 2, 3, 4, 5wiso 5256 . 2  wff  H  Isom  R ,  S  ( A ,  B )
71, 2, 5wf1o 5254 . . 3  wff  H : A
-1-1-onto-> B
8 vx . . . . . . . 8  setvar  x
98cv 1363 . . . . . . 7  class  x
10 vy . . . . . . . 8  setvar  y
1110cv 1363 . . . . . . 7  class  y
129, 11, 3wbr 4030 . . . . . 6  wff  x R y
139, 5cfv 5255 . . . . . . 7  class  ( H `
 x )
1411, 5cfv 5255 . . . . . . 7  class  ( H `
 y )
1513, 14, 4wbr 4030 . . . . . 6  wff  ( H `
 x ) S ( H `  y
)
1612, 15wb 105 . . . . 5  wff  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1716, 10, 1wral 2472 . . . 4  wff  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1817, 8, 1wral 2472 . . 3  wff  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
197, 18wa 104 . 2  wff  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
206, 19wb 105 1  wff  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  isoeq1  5845  isoeq2  5846  isoeq3  5847  isoeq4  5848  isoeq5  5849  nfiso  5850  isof1o  5851  isorel  5852  isoid  5854  isocnv  5855  isocnv2  5856  isores2  5857  isores3  5859  isotr  5860  iso0  5861  isoini2  5863  f1oiso  5870  negiso  8976  frec2uzisod  10481  zfz1isolem1  10914  xrnegiso  11408  reefiso  14953  logltb  15050
  Copyright terms: Public domain W3C validator