ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-isom Unicode version

Definition df-isom 5327
Description: Define the isomorphism predicate. We read this as "
H is an  R,  S isomorphism of  A onto  B". Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y    x, S, y   
x, H, y

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cR . . 3  class  R
4 cS . . 3  class  S
5 cH . . 3  class  H
61, 2, 3, 4, 5wiso 5319 . 2  wff  H  Isom  R ,  S  ( A ,  B )
71, 2, 5wf1o 5317 . . 3  wff  H : A
-1-1-onto-> B
8 vx . . . . . . . 8  setvar  x
98cv 1394 . . . . . . 7  class  x
10 vy . . . . . . . 8  setvar  y
1110cv 1394 . . . . . . 7  class  y
129, 11, 3wbr 4083 . . . . . 6  wff  x R y
139, 5cfv 5318 . . . . . . 7  class  ( H `
 x )
1411, 5cfv 5318 . . . . . . 7  class  ( H `
 y )
1513, 14, 4wbr 4083 . . . . . 6  wff  ( H `
 x ) S ( H `  y
)
1612, 15wb 105 . . . . 5  wff  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1716, 10, 1wral 2508 . . . 4  wff  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
1817, 8, 1wral 2508 . . 3  wff  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )
197, 18wa 104 . 2  wff  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
206, 19wb 105 1  wff  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  isoeq1  5925  isoeq2  5926  isoeq3  5927  isoeq4  5928  isoeq5  5929  nfiso  5930  isof1o  5931  isorel  5932  isoid  5934  isocnv  5935  isocnv2  5936  isores2  5937  isores3  5939  isotr  5940  iso0  5941  isoini2  5943  f1oiso  5950  negiso  9102  frec2uzisod  10629  zfz1isolem1  11062  xrnegiso  11773  reefiso  15451  logltb  15548
  Copyright terms: Public domain W3C validator