| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| 2ralbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | ralbidv 2508 |
. 2
|
| 3 | 2 | ralbidv 2508 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 |
| This theorem is referenced by: cbvral3v 2757 poeq1 4364 soeq1 4380 isoeq1 5893 isoeq2 5894 isoeq3 5895 fnmpoovd 6324 smoeq 6399 xpf1o 6966 tapeq1 7399 elinp 7622 cauappcvgpr 7810 seq3caopr2 10675 seqcaopr2g 10676 wrd2ind 11214 addcn2 11736 mulcn2 11738 sgrp1 13358 ismhm 13408 mhmex 13409 issubm 13419 isnsg 13653 nmznsg 13664 isghm 13694 iscmn 13744 ring1 13936 opprsubrngg 14088 issubrg3 14124 islmod 14168 lmodlema 14169 lsssetm 14233 islssmd 14236 islidlm 14356 ispsmet 14910 ismet 14931 isxmet 14932 addcncntoplem 15148 elcncf 15160 mpodvdsmulf1o 15577 |
| Copyright terms: Public domain | W3C validator |