| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| 2ralbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | ralbidv 2497 |
. 2
|
| 3 | 2 | ralbidv 2497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: cbvral3v 2744 poeq1 4335 soeq1 4351 isoeq1 5849 isoeq2 5850 isoeq3 5851 fnmpoovd 6274 smoeq 6349 xpf1o 6906 tapeq1 7321 elinp 7543 cauappcvgpr 7731 seq3caopr2 10587 seqcaopr2g 10588 addcn2 11477 mulcn2 11479 sgrp1 13064 ismhm 13103 mhmex 13104 issubm 13114 isnsg 13342 nmznsg 13353 isghm 13383 iscmn 13433 ring1 13625 opprsubrngg 13777 issubrg3 13813 islmod 13857 lmodlema 13858 lsssetm 13922 islssmd 13925 islidlm 14045 ispsmet 14569 ismet 14590 isxmet 14591 addcncntoplem 14807 elcncf 14819 mpodvdsmulf1o 15236 |
| Copyright terms: Public domain | W3C validator |