ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbidv Unicode version

Theorem 2ralbidv 2494
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.)
Hypothesis
Ref Expression
2ralbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
2ralbidv  |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch )
)
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x, y)    B( x, y)

Proof of Theorem 2ralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ralbidv 2470 . 2  |-  ( ph  ->  ( A. y  e.  B  ps  <->  A. y  e.  B  ch )
)
32ralbidv 2470 1  |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453
This theorem is referenced by:  cbvral3v  2711  poeq1  4284  soeq1  4300  isoeq1  5780  isoeq2  5781  isoeq3  5782  fnmpoovd  6194  smoeq  6269  xpf1o  6822  elinp  7436  cauappcvgpr  7624  seq3caopr2  10438  addcn2  11273  mulcn2  11275  sgrp1  12651  ismhm  12685  issubm  12695  ispsmet  13117  ismet  13138  isxmet  13139  addcncntoplem  13345  elcncf  13354
  Copyright terms: Public domain W3C validator