| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| 2ralbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | ralbidv 2506 |
. 2
|
| 3 | 2 | ralbidv 2506 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: cbvral3v 2753 poeq1 4347 soeq1 4363 isoeq1 5872 isoeq2 5873 isoeq3 5874 fnmpoovd 6303 smoeq 6378 xpf1o 6943 tapeq1 7366 elinp 7589 cauappcvgpr 7777 seq3caopr2 10640 seqcaopr2g 10641 addcn2 11654 mulcn2 11656 sgrp1 13276 ismhm 13326 mhmex 13327 issubm 13337 isnsg 13571 nmznsg 13582 isghm 13612 iscmn 13662 ring1 13854 opprsubrngg 14006 issubrg3 14042 islmod 14086 lmodlema 14087 lsssetm 14151 islssmd 14154 islidlm 14274 ispsmet 14828 ismet 14849 isxmet 14850 addcncntoplem 15066 elcncf 15078 mpodvdsmulf1o 15495 |
| Copyright terms: Public domain | W3C validator |