| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbidv | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| 2ralbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | ralbidv 2497 |
. 2
|
| 3 | 2 | ralbidv 2497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: cbvral3v 2744 poeq1 4334 soeq1 4350 isoeq1 5848 isoeq2 5849 isoeq3 5850 fnmpoovd 6273 smoeq 6348 xpf1o 6905 tapeq1 7319 elinp 7541 cauappcvgpr 7729 seq3caopr2 10585 seqcaopr2g 10586 addcn2 11475 mulcn2 11477 sgrp1 13054 ismhm 13093 mhmex 13094 issubm 13104 isnsg 13332 nmznsg 13343 isghm 13373 iscmn 13423 ring1 13615 opprsubrngg 13767 issubrg3 13803 islmod 13847 lmodlema 13848 lsssetm 13912 islssmd 13915 islidlm 14035 ispsmet 14559 ismet 14580 isxmet 14581 addcncntoplem 14797 elcncf 14809 mpodvdsmulf1o 15226 |
| Copyright terms: Public domain | W3C validator |