ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq3 GIF version

Theorem isoeq3 5753
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq3 (𝑆 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵)))

Proof of Theorem isoeq3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3967 . . . . 5 (𝑆 = 𝑇 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)𝑇(𝐻𝑦)))
21bibi2d 231 . . . 4 (𝑆 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑇(𝐻𝑦))))
322ralbidv 2481 . . 3 (𝑆 = 𝑇 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑇(𝐻𝑦))))
43anbi2d 460 . 2 (𝑆 = 𝑇 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑇(𝐻𝑦)))))
5 df-isom 5179 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
6 df-isom 5179 . 2 (𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑇(𝐻𝑦))))
74, 5, 63bitr4g 222 1 (𝑆 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wral 2435   class class class wbr 3965  1-1-ontowf1o 5169  cfv 5170   Isom wiso 5171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-cleq 2150  df-clel 2153  df-ral 2440  df-br 3966  df-isom 5179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator