ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq4 Unicode version

Theorem isoeq4 5583
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq4  |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( C ,  B ) ) )

Proof of Theorem isoeq4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 5245 . . 3  |-  ( A  =  C  ->  ( H : A -1-1-onto-> B  <->  H : C -1-1-onto-> B ) )
2 raleq 2562 . . . 4  |-  ( A  =  C  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
32raleqbi1dv 2570 . . 3  |-  ( A  =  C  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
41, 3anbi12d 457 . 2  |-  ( A  =  C  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( H : C
-1-1-onto-> B  /\  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) ) )
5 df-isom 5024 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
6 df-isom 5024 . 2  |-  ( H 
Isom  R ,  S  ( C ,  B )  <-> 
( H : C -1-1-onto-> B  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
74, 5, 63bitr4g 221 1  |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( C ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289   A.wral 2359   class class class wbr 3845   -1-1-onto->wf1o 5014   ` cfv 5015    Isom wiso 5016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-isom 5024
This theorem is referenced by:  zfz1isolem1  10241  zfz1iso  10242  isummolem2a  10767
  Copyright terms: Public domain W3C validator