Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isoeq4 | Unicode version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 5432 | . . 3 | |
2 | raleq 2665 | . . . 4 | |
3 | 2 | raleqbi1dv 2673 | . . 3 |
4 | 1, 3 | anbi12d 470 | . 2 |
5 | df-isom 5207 | . 2 | |
6 | df-isom 5207 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wral 2448 class class class wbr 3989 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-isom 5207 |
This theorem is referenced by: zfz1isolem1 10775 zfz1iso 10776 summodclem2a 11344 prodmodclem2a 11539 |
Copyright terms: Public domain | W3C validator |