ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq4 Unicode version

Theorem isoeq4 5713
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq4  |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( C ,  B ) ) )

Proof of Theorem isoeq4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 5365 . . 3  |-  ( A  =  C  ->  ( H : A -1-1-onto-> B  <->  H : C -1-1-onto-> B ) )
2 raleq 2629 . . . 4  |-  ( A  =  C  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
32raleqbi1dv 2637 . . 3  |-  ( A  =  C  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
41, 3anbi12d 465 . 2  |-  ( A  =  C  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( H : C
-1-1-onto-> B  /\  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) ) )
5 df-isom 5140 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
6 df-isom 5140 . 2  |-  ( H 
Isom  R ,  S  ( C ,  B )  <-> 
( H : C -1-1-onto-> B  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
74, 5, 63bitr4g 222 1  |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( C ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   A.wral 2417   class class class wbr 3937   -1-1-onto->wf1o 5130   ` cfv 5131    Isom wiso 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-isom 5140
This theorem is referenced by:  zfz1isolem1  10615  zfz1iso  10616  summodclem2a  11182  prodmodclem2a  11377
  Copyright terms: Public domain W3C validator