ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq4 Unicode version

Theorem isoeq4 5772
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq4  |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( C ,  B ) ) )

Proof of Theorem isoeq4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 5422 . . 3  |-  ( A  =  C  ->  ( H : A -1-1-onto-> B  <->  H : C -1-1-onto-> B ) )
2 raleq 2661 . . . 4  |-  ( A  =  C  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
32raleqbi1dv 2669 . . 3  |-  ( A  =  C  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
41, 3anbi12d 465 . 2  |-  ( A  =  C  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( H : C
-1-1-onto-> B  /\  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) ) )
5 df-isom 5197 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
6 df-isom 5197 . 2  |-  ( H 
Isom  R ,  S  ( C ,  B )  <-> 
( H : C -1-1-onto-> B  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
74, 5, 63bitr4g 222 1  |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( C ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   A.wral 2444   class class class wbr 3982   -1-1-onto->wf1o 5187   ` cfv 5188    Isom wiso 5189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-isom 5197
This theorem is referenced by:  zfz1isolem1  10753  zfz1iso  10754  summodclem2a  11322  prodmodclem2a  11517
  Copyright terms: Public domain W3C validator