ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2d Unicode version

Theorem iuneq2d 3990
Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.)
Hypothesis
Ref Expression
iuneq2d.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
iuneq2d  |-  ( ph  ->  U_ x  e.  A  B  =  U_ x  e.  A  C )
Distinct variable groups:    ph, x    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem iuneq2d
StepHypRef Expression
1 iuneq2d.2 . . 3  |-  ( ph  ->  B  =  C )
21adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
32iuneq2dv 3986 1  |-  ( ph  ->  U_ x  e.  A  B  =  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   U_ciun 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-iun 3967
This theorem is referenced by:  rdgeq1  6517  imasex  13338
  Copyright terms: Public domain W3C validator