| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iuneq2d | GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | iuneq2dv 3947 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ∪ ciun 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-in 3171 df-ss 3178 df-iun 3928 |
| This theorem is referenced by: rdgeq1 6447 imasex 13055 |
| Copyright terms: Public domain | W3C validator |