ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq12d Unicode version

Theorem iuneq12d 3965
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
Hypotheses
Ref Expression
iuneq1d.1  |-  ( ph  ->  A  =  B )
iuneq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
iuneq12d  |-  ( ph  ->  U_ x  e.  A  C  =  U_ x  e.  B  D )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem iuneq12d
StepHypRef Expression
1 iuneq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21iuneq1d 3964 . 2  |-  ( ph  ->  U_ x  e.  A  C  =  U_ x  e.  B  C )
3 iuneq12d.2 . . . 4  |-  ( ph  ->  C  =  D )
43adantr 276 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  C  =  D )
54iuneq2dv 3962 . 2  |-  ( ph  ->  U_ x  e.  B  C  =  U_ x  e.  B  D )
62, 5eqtrd 2240 1  |-  ( ph  ->  U_ x  e.  A  C  =  U_ x  e.  B  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   U_ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-iun 3943
This theorem is referenced by:  rdgivallem  6490  rdgon  6495  rdg0  6496  imasival  13253  reldvg  15266  dvfvalap  15268
  Copyright terms: Public domain W3C validator