| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgeq1 | Unicode version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| rdgeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5575 |
. . . . . 6
| |
| 2 | 1 | iuneq2d 3952 |
. . . . 5
|
| 3 | 2 | uneq2d 3327 |
. . . 4
|
| 4 | 3 | mpteq2dv 4135 |
. . 3
|
| 5 | recseq 6392 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | df-irdg 6456 |
. 2
| |
| 8 | df-irdg 6456 |
. 2
| |
| 9 | 6, 7, 8 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-iota 5232 df-fv 5279 df-recs 6391 df-irdg 6456 |
| This theorem is referenced by: omv 6541 oeiv 6542 |
| Copyright terms: Public domain | W3C validator |