| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgeq1 | Unicode version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| rdgeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5598 |
. . . . . 6
| |
| 2 | 1 | iuneq2d 3966 |
. . . . 5
|
| 3 | 2 | uneq2d 3335 |
. . . 4
|
| 4 | 3 | mpteq2dv 4151 |
. . 3
|
| 5 | recseq 6415 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | df-irdg 6479 |
. 2
| |
| 8 | df-irdg 6479 |
. 2
| |
| 9 | 6, 7, 8 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-iota 5251 df-fv 5298 df-recs 6414 df-irdg 6479 |
| This theorem is referenced by: omv 6564 oeiv 6565 |
| Copyright terms: Public domain | W3C validator |