Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgeq1 | Unicode version |
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
rdgeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5495 | . . . . . 6 | |
2 | 1 | iuneq2d 3898 | . . . . 5 |
3 | 2 | uneq2d 3281 | . . . 4 |
4 | 3 | mpteq2dv 4080 | . . 3 |
5 | recseq 6285 | . . 3 recs recs | |
6 | 4, 5 | syl 14 | . 2 recs recs |
7 | df-irdg 6349 | . 2 recs | |
8 | df-irdg 6349 | . 2 recs | |
9 | 6, 7, 8 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cvv 2730 cun 3119 ciun 3873 cmpt 4050 cdm 4611 cfv 5198 recscrecs 6283 crdg 6348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-iota 5160 df-fv 5206 df-recs 6284 df-irdg 6349 |
This theorem is referenced by: omv 6434 oeiv 6435 |
Copyright terms: Public domain | W3C validator |