| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgeq1 | Unicode version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| rdgeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5574 |
. . . . . 6
| |
| 2 | 1 | iuneq2d 3951 |
. . . . 5
|
| 3 | 2 | uneq2d 3326 |
. . . 4
|
| 4 | 3 | mpteq2dv 4134 |
. . 3
|
| 5 | recseq 6391 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | df-irdg 6455 |
. 2
| |
| 8 | df-irdg 6455 |
. 2
| |
| 9 | 6, 7, 8 | 3eqtr4g 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-iota 5231 df-fv 5278 df-recs 6390 df-irdg 6455 |
| This theorem is referenced by: omv 6540 oeiv 6541 |
| Copyright terms: Public domain | W3C validator |