ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq1 Unicode version

Theorem rdgeq1 6339
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1  |-  ( F  =  G  ->  rec ( F ,  A )  =  rec ( G ,  A ) )

Proof of Theorem rdgeq1
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5485 . . . . . 6  |-  ( F  =  G  ->  ( F `  ( g `  x ) )  =  ( G `  (
g `  x )
) )
21iuneq2d 3891 . . . . 5  |-  ( F  =  G  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  = 
U_ x  e.  dom  g ( G `  ( g `  x
) ) )
32uneq2d 3276 . . . 4  |-  ( F  =  G  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( A  u.  U_ x  e.  dom  g
( G `  (
g `  x )
) ) )
43mpteq2dv 4073 . . 3  |-  ( F  =  G  ->  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( G `
 ( g `  x ) ) ) ) )
5 recseq 6274 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( G `
 ( g `  x ) ) ) )  -> recs ( (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )  = recs (
( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( G `
 ( g `  x ) ) ) ) ) )
64, 5syl 14 . 2  |-  ( F  =  G  -> recs ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )  = recs (
( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( G `
 ( g `  x ) ) ) ) ) )
7 df-irdg 6338 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
8 df-irdg 6338 . 2  |-  rec ( G ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( G `  (
g `  x )
) ) ) )
96, 7, 83eqtr4g 2224 1  |-  ( F  =  G  ->  rec ( F ,  A )  =  rec ( G ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   _Vcvv 2726    u. cun 3114   U_ciun 3866    |-> cmpt 4043   dom cdm 4604   ` cfv 5188  recscrecs 6272   reccrdg 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-iota 5153  df-fv 5196  df-recs 6273  df-irdg 6338
This theorem is referenced by:  omv  6423  oeiv  6424
  Copyright terms: Public domain W3C validator