| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mo2dc | GIF version | ||
| Description: Alternate definition of "at most one" where existence is decidable. (Contributed by Jim Kingdon, 2-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| mo2dc.1 | ⊢ Ⅎ𝑦𝜑 | 
| Ref | Expression | 
|---|---|
| mo2dc | ⊢ (DECID ∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mo2dc.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1533 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | 
| 3 | 2 | mo3h 2098 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 4 | 1 | modc 2088 | . 2 ⊢ (DECID ∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | 
| 5 | 3, 4 | bitr4id 199 | 1 ⊢ (DECID ∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 [wsb 1776 ∃*wmo 2046 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |