ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo3 Unicode version

Theorem mo3 2029
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that  y not occur in  ph in place of our hypothesis. (Contributed by NM, 8-Mar-1995.)
Hypothesis
Ref Expression
mo3.1  |-  F/ y
ph
Assertion
Ref Expression
mo3  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo3
StepHypRef Expression
1 mo3.1 . . 3  |-  F/ y
ph
21nfri 1482 . 2  |-  ( ph  ->  A. y ph )
32mo3h 2028 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1312   F/wnf 1419   [wsb 1718   E*wmo 1976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979
This theorem is referenced by:  sbmo  2034  rmo3f  2850  rmo3  2968  isarep2  5168
  Copyright terms: Public domain W3C validator