Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mo3 | GIF version |
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) |
Ref | Expression |
---|---|
mo3.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mo3 | ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo3.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1499 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | mo3h 2059 | 1 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1333 Ⅎwnf 1440 [wsb 1742 ∃*wmo 2007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 |
This theorem is referenced by: sbmo 2065 rmo3f 2909 rmo3 3028 isarep2 5258 |
Copyright terms: Public domain | W3C validator |