![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mo3 | GIF version |
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) |
Ref | Expression |
---|---|
mo3.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mo3 | ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo3.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1464 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | mo3h 2008 | 1 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1294 Ⅎwnf 1401 [wsb 1699 ∃*wmo 1956 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 |
This theorem is referenced by: sbmo 2014 rmo3f 2826 rmo3 2944 isarep2 5135 |
Copyright terms: Public domain | W3C validator |