| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mo3 | GIF version | ||
| Description: Alternate definition of "at most one". Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| mo3.1 | ⊢ Ⅎ𝑦𝜑 | 
| Ref | Expression | 
|---|---|
| mo3 | ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mo3.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1533 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | 
| 3 | 2 | mo3h 2098 | 1 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 [wsb 1776 ∃*wmo 2046 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: sbmo 2104 rmo3f 2961 rmo3 3081 isarep2 5345 | 
| Copyright terms: Public domain | W3C validator |