ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo3 GIF version

Theorem mo3 2009
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.)
Hypothesis
Ref Expression
mo3.1 𝑦𝜑
Assertion
Ref Expression
mo3 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mo3
StepHypRef Expression
1 mo3.1 . . 3 𝑦𝜑
21nfri 1464 . 2 (𝜑 → ∀𝑦𝜑)
32mo3h 2008 1 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1294  wnf 1401  [wsb 1699  ∃*wmo 1956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480
This theorem depends on definitions:  df-bi 116  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959
This theorem is referenced by:  sbmo  2014  rmo3f  2826  rmo3  2944  isarep2  5135
  Copyright terms: Public domain W3C validator