ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moaneu Unicode version

Theorem moaneu 2130
Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moaneu  |-  E* x
( ph  /\  E! x ph )

Proof of Theorem moaneu
StepHypRef Expression
1 eumo 2086 . . 3  |-  ( E! x ph  ->  E* x ph )
2 nfeu1 2065 . . . 4  |-  F/ x E! x ph
32moanim 2128 . . 3  |-  ( E* x ( E! x ph  /\  ph )  <->  ( E! x ph  ->  E* x ph ) )
41, 3mpbir 146 . 2  |-  E* x
( E! x ph  /\ 
ph )
5 ancom 266 . . 3  |-  ( (
ph  /\  E! x ph )  <->  ( E! x ph  /\  ph ) )
65mobii 2091 . 2  |-  ( E* x ( ph  /\  E! x ph )  <->  E* x
( E! x ph  /\ 
ph ) )
74, 6mpbir 146 1  |-  E* x
( ph  /\  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E!weu 2054   E*wmo 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator