ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moaneu Unicode version

Theorem moaneu 2121
Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moaneu  |-  E* x
( ph  /\  E! x ph )

Proof of Theorem moaneu
StepHypRef Expression
1 eumo 2077 . . 3  |-  ( E! x ph  ->  E* x ph )
2 nfeu1 2056 . . . 4  |-  F/ x E! x ph
32moanim 2119 . . 3  |-  ( E* x ( E! x ph  /\  ph )  <->  ( E! x ph  ->  E* x ph ) )
41, 3mpbir 146 . 2  |-  E* x
( E! x ph  /\ 
ph )
5 ancom 266 . . 3  |-  ( (
ph  /\  E! x ph )  <->  ( E! x ph  /\  ph ) )
65mobii 2082 . 2  |-  ( E* x ( ph  /\  E! x ph )  <->  E* x
( E! x ph  /\ 
ph ) )
74, 6mpbir 146 1  |-  E* x
( ph  /\  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E!weu 2045   E*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator