ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanmo Unicode version

Theorem moanmo 2080
Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moanmo  |-  E* x
( ph  /\  E* x ph )

Proof of Theorem moanmo
StepHypRef Expression
1 id 19 . . 3  |-  ( E* x ph  ->  E* x ph )
2 nfmo1 2015 . . . 4  |-  F/ x E* x ph
32moanim 2077 . . 3  |-  ( E* x ( E* x ph  /\  ph )  <->  ( E* x ph  ->  E* x ph ) )
41, 3mpbir 145 . 2  |-  E* x
( E* x ph  /\ 
ph )
5 ancom 264 . . 3  |-  ( (
ph  /\  E* x ph )  <->  ( E* x ph  /\  ph ) )
65mobii 2040 . 2  |-  ( E* x ( ph  /\  E* x ph )  <->  E* x
( E* x ph  /\ 
ph ) )
74, 6mpbir 145 1  |-  E* x
( ph  /\  E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E*wmo 2004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator