ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanimv Unicode version

Theorem moanimv 2128
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
moanimv  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem moanimv
StepHypRef Expression
1 nfv 1550 . 2  |-  F/ x ph
21moanim 2127 1  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E*wmo 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057
This theorem is referenced by:  mosubt  2949  2reuswapdc  2976  2rmorex  2978  mosubopt  4739  funmo  5285  funcnv  5334  fncnv  5339  isarep2  5360  fnres  5391  fnopabg  5398  fvopab3ig  5652  opabex  5807  fnoprabg  6045  ovidi  6063  ovig  6066  oprabexd  6211  oprabex  6212  th3qcor  6725  dvfgg  15131
  Copyright terms: Public domain W3C validator