ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanimv Unicode version

Theorem moanimv 2089
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
moanimv  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem moanimv
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ph
21moanim 2088 1  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  mosubt  2903  2reuswapdc  2930  2rmorex  2932  mosubopt  4669  funmo  5203  funcnv  5249  fncnv  5254  isarep2  5275  fnres  5304  fnopabg  5311  fvopab3ig  5560  opabex  5709  fnoprabg  5943  ovidi  5960  ovig  5963  oprabexd  6095  oprabex  6096  th3qcor  6605  dvfgg  13297
  Copyright terms: Public domain W3C validator