Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moanimv | Unicode version |
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
moanimv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1505 | . 2 | |
2 | 1 | moanim 2077 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wmo 2004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 |
This theorem is referenced by: mosubt 2885 2reuswapdc 2912 2rmorex 2914 mosubopt 4644 funmo 5178 funcnv 5224 fncnv 5229 isarep2 5250 fnres 5279 fnopabg 5286 fvopab3ig 5535 opabex 5684 fnoprabg 5912 ovidi 5929 ovig 5932 oprabexd 6065 oprabex 6066 th3qcor 6573 dvfgg 13004 |
Copyright terms: Public domain | W3C validator |