ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanmo GIF version

Theorem moanmo 2083
Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moanmo ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)

Proof of Theorem moanmo
StepHypRef Expression
1 id 19 . . 3 (∃*𝑥𝜑 → ∃*𝑥𝜑)
2 nfmo1 2018 . . . 4 𝑥∃*𝑥𝜑
32moanim 2080 . . 3 (∃*𝑥(∃*𝑥𝜑𝜑) ↔ (∃*𝑥𝜑 → ∃*𝑥𝜑))
41, 3mpbir 145 . 2 ∃*𝑥(∃*𝑥𝜑𝜑)
5 ancom 264 . . 3 ((𝜑 ∧ ∃*𝑥𝜑) ↔ (∃*𝑥𝜑𝜑))
65mobii 2043 . 2 (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) ↔ ∃*𝑥(∃*𝑥𝜑𝜑))
74, 6mpbir 145 1 ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  ∃*wmo 2007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator