ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanmo GIF version

Theorem moanmo 2122
Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moanmo ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)

Proof of Theorem moanmo
StepHypRef Expression
1 id 19 . . 3 (∃*𝑥𝜑 → ∃*𝑥𝜑)
2 nfmo1 2057 . . . 4 𝑥∃*𝑥𝜑
32moanim 2119 . . 3 (∃*𝑥(∃*𝑥𝜑𝜑) ↔ (∃*𝑥𝜑 → ∃*𝑥𝜑))
41, 3mpbir 146 . 2 ∃*𝑥(∃*𝑥𝜑𝜑)
5 ancom 266 . . 3 ((𝜑 ∧ ∃*𝑥𝜑) ↔ (∃*𝑥𝜑𝜑))
65mobii 2082 . 2 (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) ↔ ∃*𝑥(∃*𝑥𝜑𝜑))
74, 6mpbir 146 1 ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  ∃*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator