| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moanmo | GIF version | ||
| Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.) |
| Ref | Expression |
|---|---|
| moanmo | ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (∃*𝑥𝜑 → ∃*𝑥𝜑) | |
| 2 | nfmo1 2057 | . . . 4 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
| 3 | 2 | moanim 2119 | . . 3 ⊢ (∃*𝑥(∃*𝑥𝜑 ∧ 𝜑) ↔ (∃*𝑥𝜑 → ∃*𝑥𝜑)) |
| 4 | 1, 3 | mpbir 146 | . 2 ⊢ ∃*𝑥(∃*𝑥𝜑 ∧ 𝜑) |
| 5 | ancom 266 | . . 3 ⊢ ((𝜑 ∧ ∃*𝑥𝜑) ↔ (∃*𝑥𝜑 ∧ 𝜑)) | |
| 6 | 5 | mobii 2082 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) ↔ ∃*𝑥(∃*𝑥𝜑 ∧ 𝜑)) |
| 7 | 4, 6 | mpbir 146 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |