Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moanmo | GIF version |
Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.) |
Ref | Expression |
---|---|
moanmo | ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (∃*𝑥𝜑 → ∃*𝑥𝜑) | |
2 | nfmo1 2031 | . . . 4 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
3 | 2 | moanim 2093 | . . 3 ⊢ (∃*𝑥(∃*𝑥𝜑 ∧ 𝜑) ↔ (∃*𝑥𝜑 → ∃*𝑥𝜑)) |
4 | 1, 3 | mpbir 145 | . 2 ⊢ ∃*𝑥(∃*𝑥𝜑 ∧ 𝜑) |
5 | ancom 264 | . . 3 ⊢ ((𝜑 ∧ ∃*𝑥𝜑) ↔ (∃*𝑥𝜑 ∧ 𝜑)) | |
6 | 5 | mobii 2056 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) ↔ ∃*𝑥(∃*𝑥𝜑 ∧ 𝜑)) |
7 | 4, 6 | mpbir 145 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |