ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12i Unicode version

Theorem mpteq12i 4148
Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12i.1  |-  A  =  C
mpteq12i.2  |-  B  =  D
Assertion
Ref Expression
mpteq12i  |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D )

Proof of Theorem mpteq12i
StepHypRef Expression
1 mpteq12i.1 . . . 4  |-  A  =  C
21a1i 9 . . 3  |-  ( T. 
->  A  =  C
)
3 mpteq12i.2 . . . 4  |-  B  =  D
43a1i 9 . . 3  |-  ( T. 
->  B  =  D
)
52, 4mpteq12dv 4142 . 2  |-  ( T. 
->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
65mptru 1382 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   T. wtru 1374    |-> cmpt 4121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-opab 4122  df-mpt 4123
This theorem is referenced by:  offres  6243
  Copyright terms: Public domain W3C validator