| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offres | Unicode version | ||
| Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| offres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3394 |
. . . . . 6
| |
| 2 | 1 | sseli 3189 |
. . . . 5
|
| 3 | fvres 5602 |
. . . . . 6
| |
| 4 | fvres 5602 |
. . . . . 6
| |
| 5 | 3, 4 | oveq12d 5964 |
. . . . 5
|
| 6 | 2, 5 | syl 14 |
. . . 4
|
| 7 | 6 | mpteq2ia 4131 |
. . 3
|
| 8 | inindi 3390 |
. . . . 5
| |
| 9 | incom 3365 |
. . . . 5
| |
| 10 | dmres 4981 |
. . . . . 6
| |
| 11 | dmres 4981 |
. . . . . 6
| |
| 12 | 10, 11 | ineq12i 3372 |
. . . . 5
|
| 13 | 8, 9, 12 | 3eqtr4ri 2237 |
. . . 4
|
| 14 | eqid 2205 |
. . . 4
| |
| 15 | 13, 14 | mpteq12i 4133 |
. . 3
|
| 16 | resmpt3 5009 |
. . 3
| |
| 17 | 7, 15, 16 | 3eqtr4ri 2237 |
. 2
|
| 18 | offval3 6221 |
. . 3
| |
| 19 | 18 | reseq1d 4959 |
. 2
|
| 20 | resexg 5000 |
. . 3
| |
| 21 | resexg 5000 |
. . 3
| |
| 22 | offval3 6221 |
. . 3
| |
| 23 | 20, 21, 22 | syl2an 289 |
. 2
|
| 24 | 17, 19, 23 | 3eqtr4a 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-of 6160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |