ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offres Unicode version

Theorem offres 6201
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offres  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( F  |`  D )  oF R ( G  |`  D )
) )

Proof of Theorem offres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3385 . . . . . 6  |-  ( ( dom  F  i^i  dom  G )  i^i  D ) 
C_  D
21sseli 3180 . . . . 5  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  ->  x  e.  D )
3 fvres 5585 . . . . . 6  |-  ( x  e.  D  ->  (
( F  |`  D ) `
 x )  =  ( F `  x
) )
4 fvres 5585 . . . . . 6  |-  ( x  e.  D  ->  (
( G  |`  D ) `
 x )  =  ( G `  x
) )
53, 4oveq12d 5943 . . . . 5  |-  ( x  e.  D  ->  (
( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
62, 5syl 14 . . . 4  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  -> 
( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
76mpteq2ia 4120 . . 3  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( F `  x ) R ( G `  x ) ) )
8 inindi 3381 . . . . 5  |-  ( D  i^i  ( dom  F  i^i  dom  G ) )  =  ( ( D  i^i  dom  F )  i^i  ( D  i^i  dom  G ) )
9 incom 3356 . . . . 5  |-  ( ( dom  F  i^i  dom  G )  i^i  D )  =  ( D  i^i  ( dom  F  i^i  dom  G ) )
10 dmres 4968 . . . . . 6  |-  dom  ( F  |`  D )  =  ( D  i^i  dom  F )
11 dmres 4968 . . . . . 6  |-  dom  ( G  |`  D )  =  ( D  i^i  dom  G )
1210, 11ineq12i 3363 . . . . 5  |-  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  =  ( ( D  i^i  dom 
F )  i^i  ( D  i^i  dom  G )
)
138, 9, 123eqtr4ri 2228 . . . 4  |-  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  =  ( ( dom  F  i^i  dom  G )  i^i 
D )
14 eqid 2196 . . . 4  |-  ( ( ( F  |`  D ) `
 x ) R ( ( G  |`  D ) `  x
) )  =  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )
1513, 14mpteq12i 4122 . . 3  |-  ( x  e.  ( dom  ( F  |`  D )  i^i 
dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( ( F  |`  D ) `
 x ) R ( ( G  |`  D ) `  x
) ) )
16 resmpt3 4996 . . 3  |-  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  |`  D )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( F `  x ) R ( G `  x ) ) )
177, 15, 163eqtr4ri 2228 . 2  |-  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  |`  D )  =  ( x  e.  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x ) R ( ( G  |`  D ) `
 x ) ) )
18 offval3 6200 . . 3  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
1918reseq1d 4946 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  |`  D ) )
20 resexg 4987 . . 3  |-  ( F  e.  V  ->  ( F  |`  D )  e. 
_V )
21 resexg 4987 . . 3  |-  ( G  e.  W  ->  ( G  |`  D )  e. 
_V )
22 offval3 6200 . . 3  |-  ( ( ( F  |`  D )  e.  _V  /\  ( G  |`  D )  e. 
_V )  ->  (
( F  |`  D )  oF R ( G  |`  D )
)  =  ( x  e.  ( dom  ( F  |`  D )  i^i 
dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) ) )
2320, 21, 22syl2an 289 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  |`  D )  oF R ( G  |`  D ) )  =  ( x  e.  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x ) R ( ( G  |`  D ) `
 x ) ) ) )
2417, 19, 233eqtr4a 2255 1  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( F  |`  D )  oF R ( G  |`  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    |-> cmpt 4095   dom cdm 4664    |` cres 4666   ` cfv 5259  (class class class)co 5925    oFcof 6137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator