| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12i | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12i.1 | ⊢ 𝐴 = 𝐶 |
| mpteq12i.2 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| mpteq12i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12i.1 | . . . 4 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 = 𝐶) |
| 3 | mpteq12i.2 | . . . 4 ⊢ 𝐵 = 𝐷 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = 𝐷) |
| 5 | 2, 4 | mpteq12dv 4165 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| 6 | 5 | mptru 1404 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊤wtru 1396 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: offres 6278 |
| Copyright terms: Public domain | W3C validator |