| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpteq12i | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| mpteq12i.1 | ⊢ 𝐴 = 𝐶 | 
| mpteq12i.2 | ⊢ 𝐵 = 𝐷 | 
| Ref | Expression | 
|---|---|
| mpteq12i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpteq12i.1 | . . . 4 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 = 𝐶) | 
| 3 | mpteq12i.2 | . . . 4 ⊢ 𝐵 = 𝐷 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = 𝐷) | 
| 5 | 2, 4 | mpteq12dv 4115 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | 
| 6 | 5 | mptru 1373 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ⊤wtru 1365 ↦ cmpt 4094 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4095 df-mpt 4096 | 
| This theorem is referenced by: offres 6192 | 
| Copyright terms: Public domain | W3C validator |