![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpteq12i | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12i.1 | ⊢ 𝐴 = 𝐶 |
mpteq12i.2 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
mpteq12i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12i.1 | . . . 4 ⊢ 𝐴 = 𝐶 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 = 𝐶) |
3 | mpteq12i.2 | . . . 4 ⊢ 𝐵 = 𝐷 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = 𝐷) |
5 | 2, 4 | mpteq12dv 4111 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
6 | 5 | mptru 1373 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ⊤wtru 1365 ↦ cmpt 4090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-opab 4091 df-mpt 4092 |
This theorem is referenced by: offres 6187 |
Copyright terms: Public domain | W3C validator |