ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2i Unicode version

Theorem mpteq2i 4074
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2i.1  |-  B  =  C
Assertion
Ref Expression
mpteq2i  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )

Proof of Theorem mpteq2i
StepHypRef Expression
1 mpteq2i.1 . . 3  |-  B  =  C
21a1i 9 . 2  |-  ( x  e.  A  ->  B  =  C )
32mpteq2ia 4073 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141    |-> cmpt 4048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-opab 4049  df-mpt 4050
This theorem is referenced by:  frecsuc  6383  fodjuomni  7121  fodjumkv  7132  axcaucvg  7849  0tonninf  10382  1tonninf  10383  cbvsum  11310  cbvprod  11508  eirraplem  11726  cnmpt12f  13039  fsumcncntop  13309  dvef  13441  nninfsellemqall  14008  nninfomni  14012  exmidsbthr  14015
  Copyright terms: Public domain W3C validator