| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2i | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2i.1 |
|
| Ref | Expression |
|---|---|
| mpteq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2i.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | mpteq2ia 4170 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4146 df-mpt 4147 |
| This theorem is referenced by: frecsuc 6553 fodjuomni 7316 fodjumkv 7327 axcaucvg 8087 0tonninf 10662 1tonninf 10663 cbvsum 11871 cbvprod 12069 eirraplem 12288 znzrh2 14610 cnmpt12f 14960 fsumcncntop 15241 dvmptfsum 15399 dvef 15401 plyco 15433 plycj 15435 nninfsellemqall 16381 nninfomni 16385 nnnninfex 16388 exmidsbthr 16391 |
| Copyright terms: Public domain | W3C validator |