ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2i Unicode version

Theorem mpteq2i 4105
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2i.1  |-  B  =  C
Assertion
Ref Expression
mpteq2i  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )

Proof of Theorem mpteq2i
StepHypRef Expression
1 mpteq2i.1 . . 3  |-  B  =  C
21a1i 9 . 2  |-  ( x  e.  A  ->  B  =  C )
32mpteq2ia 4104 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2160    |-> cmpt 4079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-ral 2473  df-opab 4080  df-mpt 4081
This theorem is referenced by:  frecsuc  6432  fodjuomni  7177  fodjumkv  7188  axcaucvg  7929  0tonninf  10470  1tonninf  10471  cbvsum  11400  cbvprod  11598  eirraplem  11816  cnmpt12f  14246  fsumcncntop  14516  dvef  14648  nninfsellemqall  15226  nninfomni  15230  exmidsbthr  15233
  Copyright terms: Public domain W3C validator