ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2i Unicode version

Theorem mpteq2i 4121
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2i.1  |-  B  =  C
Assertion
Ref Expression
mpteq2i  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )

Proof of Theorem mpteq2i
StepHypRef Expression
1 mpteq2i.1 . . 3  |-  B  =  C
21a1i 9 . 2  |-  ( x  e.  A  ->  B  =  C )
32mpteq2ia 4120 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167    |-> cmpt 4095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4096  df-mpt 4097
This theorem is referenced by:  frecsuc  6474  fodjuomni  7224  fodjumkv  7235  axcaucvg  7984  0tonninf  10549  1tonninf  10550  cbvsum  11542  cbvprod  11740  eirraplem  11959  znzrh2  14278  cnmpt12f  14606  fsumcncntop  14887  dvmptfsum  15045  dvef  15047  plyco  15079  plycj  15081  nninfsellemqall  15746  nninfomni  15750  exmidsbthr  15754
  Copyright terms: Public domain W3C validator