ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2i Unicode version

Theorem mpteq2i 4120
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2i.1  |-  B  =  C
Assertion
Ref Expression
mpteq2i  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )

Proof of Theorem mpteq2i
StepHypRef Expression
1 mpteq2i.1 . . 3  |-  B  =  C
21a1i 9 . 2  |-  ( x  e.  A  ->  B  =  C )
32mpteq2ia 4119 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167    |-> cmpt 4094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4095  df-mpt 4096
This theorem is referenced by:  frecsuc  6465  fodjuomni  7215  fodjumkv  7226  axcaucvg  7967  0tonninf  10532  1tonninf  10533  cbvsum  11525  cbvprod  11723  eirraplem  11942  znzrh2  14202  cnmpt12f  14522  fsumcncntop  14803  dvmptfsum  14961  dvef  14963  plyco  14995  plycj  14997  nninfsellemqall  15659  nninfomni  15663  exmidsbthr  15667
  Copyright terms: Public domain W3C validator