| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2i | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2i.1 |
|
| Ref | Expression |
|---|---|
| mpteq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2i.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | mpteq2ia 4130 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-opab 4106 df-mpt 4107 |
| This theorem is referenced by: frecsuc 6493 fodjuomni 7251 fodjumkv 7262 axcaucvg 8013 0tonninf 10585 1tonninf 10586 cbvsum 11671 cbvprod 11869 eirraplem 12088 znzrh2 14408 cnmpt12f 14758 fsumcncntop 15039 dvmptfsum 15197 dvef 15199 plyco 15231 plycj 15233 nninfsellemqall 15952 nninfomni 15956 nnnninfex 15959 exmidsbthr 15962 |
| Copyright terms: Public domain | W3C validator |