ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2da Unicode version

Theorem mpteq2da 4107
Description: Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq2da.1  |-  F/ x ph
mpteq2da.2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
mpteq2da  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )

Proof of Theorem mpteq2da
StepHypRef Expression
1 eqid 2189 . . 3  |-  A  =  A
21ax-gen 1460 . 2  |-  A. x  A  =  A
3 mpteq2da.1 . . 3  |-  F/ x ph
4 mpteq2da.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
54ex 115 . . 3  |-  ( ph  ->  ( x  e.  A  ->  B  =  C ) )
63, 5ralrimi 2561 . 2  |-  ( ph  ->  A. x  e.  A  B  =  C )
7 mpteq12f 4098 . 2  |-  ( ( A. x  A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
82, 6, 7sylancr 414 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   F/wnf 1471    e. wcel 2160   A.wral 2468    |-> cmpt 4079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-ral 2473  df-opab 4080  df-mpt 4081
This theorem is referenced by:  mpteq2dva  4108  prodeq1f  11592  prodeq2  11597
  Copyright terms: Public domain W3C validator