| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2da | Unicode version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2da.1 |
|
| mpteq2da.2 |
|
| Ref | Expression |
|---|---|
| mpteq2da |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . 3
| |
| 2 | 1 | ax-gen 1471 |
. 2
|
| 3 | mpteq2da.1 |
. . 3
| |
| 4 | mpteq2da.2 |
. . . 4
| |
| 5 | 4 | ex 115 |
. . 3
|
| 6 | 3, 5 | ralrimi 2576 |
. 2
|
| 7 | mpteq12f 4123 |
. 2
| |
| 8 | 2, 6, 7 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-opab 4105 df-mpt 4106 |
| This theorem is referenced by: mpteq2dva 4133 prodeq1f 11805 prodeq2 11810 gsumfzsnfd 13623 |
| Copyright terms: Public domain | W3C validator |