ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2da Unicode version

Theorem mpteq2da 4132
Description: Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq2da.1  |-  F/ x ph
mpteq2da.2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
mpteq2da  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )

Proof of Theorem mpteq2da
StepHypRef Expression
1 eqid 2204 . . 3  |-  A  =  A
21ax-gen 1471 . 2  |-  A. x  A  =  A
3 mpteq2da.1 . . 3  |-  F/ x ph
4 mpteq2da.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
54ex 115 . . 3  |-  ( ph  ->  ( x  e.  A  ->  B  =  C ) )
63, 5ralrimi 2576 . 2  |-  ( ph  ->  A. x  e.  A  B  =  C )
7 mpteq12f 4123 . 2  |-  ( ( A. x  A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
82, 6, 7sylancr 414 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1370    = wceq 1372   F/wnf 1482    e. wcel 2175   A.wral 2483    |-> cmpt 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-ral 2488  df-opab 4105  df-mpt 4106
This theorem is referenced by:  mpteq2dva  4133  prodeq1f  11805  prodeq2  11810  gsumfzsnfd  13623
  Copyright terms: Public domain W3C validator