ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1d Unicode version

Theorem mpteq1d 4074
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
mpteq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
mpteq1d  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem mpteq1d
StepHypRef Expression
1 mpteq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 mpteq1 4073 . 2  |-  ( A  =  B  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    |-> cmpt 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-opab 4051  df-mpt 4052
This theorem is referenced by:  fmptapd  5687  offval  6068
  Copyright terms: Public domain W3C validator