| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq1d | Unicode version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| mpteq1d.1 |
|
| Ref | Expression |
|---|---|
| mpteq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1d.1 |
. 2
| |
| 2 | mpteq1 4128 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-opab 4106 df-mpt 4107 |
| This theorem is referenced by: mptimass 5035 fmptapd 5775 offval 6166 swrd00g 11102 swrdlend 11111 swrd0g 11113 qusex 13157 mulgnn0gsum 13464 gsumfzconst 13677 gsumfzsnfd 13681 gsumfzfsumlem0 14348 gsumfzfsumlemm 14349 |
| Copyright terms: Public domain | W3C validator |