ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1d Unicode version

Theorem mpteq1d 4129
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
mpteq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
mpteq1d  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem mpteq1d
StepHypRef Expression
1 mpteq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 mpteq1 4128 . 2  |-  ( A  =  B  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    |-> cmpt 4105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489  df-opab 4106  df-mpt 4107
This theorem is referenced by:  mptimass  5035  fmptapd  5775  offval  6166  swrd00g  11102  swrdlend  11111  swrd0g  11113  qusex  13157  mulgnn0gsum  13464  gsumfzconst  13677  gsumfzsnfd  13681  gsumfzfsumlem0  14348  gsumfzfsumlemm  14349
  Copyright terms: Public domain W3C validator