| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2ia | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 |
|
| Ref | Expression |
|---|---|
| mpteq2ia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . 3
| |
| 2 | 1 | ax-gen 1473 |
. 2
|
| 3 | mpteq2ia.1 |
. . 3
| |
| 4 | 3 | rgen 2561 |
. 2
|
| 5 | mpteq12f 4140 |
. 2
| |
| 6 | 2, 4, 5 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-opab 4122 df-mpt 4123 |
| This theorem is referenced by: mpteq2i 4147 feqresmpt 5656 elfvmptrab 5698 fmptap 5797 offres 6243 cnrecnv 11336 ege2le3 12097 eirraplem 12203 cnmpt1st 14875 cnmpt2nd 14876 expcn 15156 expcncf 15196 dvexp 15298 dveflem 15313 dvef 15314 elply2 15322 plyid 15333 |
| Copyright terms: Public domain | W3C validator |