ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2ia Unicode version

Theorem mpteq2ia 4170
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2ia.1  |-  ( x  e.  A  ->  B  =  C )
Assertion
Ref Expression
mpteq2ia  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )

Proof of Theorem mpteq2ia
StepHypRef Expression
1 eqid 2229 . . 3  |-  A  =  A
21ax-gen 1495 . 2  |-  A. x  A  =  A
3 mpteq2ia.1 . . 3  |-  ( x  e.  A  ->  B  =  C )
43rgen 2583 . 2  |-  A. x  e.  A  B  =  C
5 mpteq12f 4164 . 2  |-  ( ( A. x  A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
62, 4, 5mp2an 426 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508    |-> cmpt 4145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-opab 4146  df-mpt 4147
This theorem is referenced by:  mpteq2i  4171  feqresmpt  5688  elfvmptrab  5730  fmptap  5829  offres  6280  cnrecnv  11421  ege2le3  12182  eirraplem  12288  cnmpt1st  14962  cnmpt2nd  14963  expcn  15243  expcncf  15283  dvexp  15385  dveflem  15400  dvef  15401  elply2  15409  plyid  15420
  Copyright terms: Public domain W3C validator