| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2ia | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 |
|
| Ref | Expression |
|---|---|
| mpteq2ia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . 3
| |
| 2 | 1 | ax-gen 1472 |
. 2
|
| 3 | mpteq2ia.1 |
. . 3
| |
| 4 | 3 | rgen 2559 |
. 2
|
| 5 | mpteq12f 4125 |
. 2
| |
| 6 | 2, 4, 5 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-opab 4107 df-mpt 4108 |
| This theorem is referenced by: mpteq2i 4132 feqresmpt 5635 elfvmptrab 5677 fmptap 5776 offres 6222 cnrecnv 11254 ege2le3 12015 eirraplem 12121 cnmpt1st 14793 cnmpt2nd 14794 expcn 15074 expcncf 15114 dvexp 15216 dveflem 15231 dvef 15232 elply2 15240 plyid 15251 |
| Copyright terms: Public domain | W3C validator |