ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2ia Unicode version

Theorem mpteq2ia 4068
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2ia.1  |-  ( x  e.  A  ->  B  =  C )
Assertion
Ref Expression
mpteq2ia  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )

Proof of Theorem mpteq2ia
StepHypRef Expression
1 eqid 2165 . . 3  |-  A  =  A
21ax-gen 1437 . 2  |-  A. x  A  =  A
3 mpteq2ia.1 . . 3  |-  ( x  e.  A  ->  B  =  C )
43rgen 2519 . 2  |-  A. x  e.  A  B  =  C
5 mpteq12f 4062 . 2  |-  ( ( A. x  A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
62, 4, 5mp2an 423 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444    |-> cmpt 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-opab 4044  df-mpt 4045
This theorem is referenced by:  mpteq2i  4069  feqresmpt  5540  elfvmptrab  5581  fmptap  5675  offres  6103  cnrecnv  10852  ege2le3  11612  eirraplem  11717  cnmpt1st  12938  cnmpt2nd  12939  expcncf  13242  dvexp  13325  dveflem  13337  dvef  13338
  Copyright terms: Public domain W3C validator