ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2ia Unicode version

Theorem mpteq2ia 4091
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2ia.1  |-  ( x  e.  A  ->  B  =  C )
Assertion
Ref Expression
mpteq2ia  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )

Proof of Theorem mpteq2ia
StepHypRef Expression
1 eqid 2177 . . 3  |-  A  =  A
21ax-gen 1449 . 2  |-  A. x  A  =  A
3 mpteq2ia.1 . . 3  |-  ( x  e.  A  ->  B  =  C )
43rgen 2530 . 2  |-  A. x  e.  A  B  =  C
5 mpteq12f 4085 . 2  |-  ( ( A. x  A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
62, 4, 5mp2an 426 1  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    = wceq 1353    e. wcel 2148   A.wral 2455    |-> cmpt 4066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-ral 2460  df-opab 4067  df-mpt 4068
This theorem is referenced by:  mpteq2i  4092  feqresmpt  5572  elfvmptrab  5613  fmptap  5708  offres  6138  cnrecnv  10921  ege2le3  11681  eirraplem  11786  cnmpt1st  13873  cnmpt2nd  13874  expcncf  14177  dvexp  14260  dveflem  14272  dvef  14273
  Copyright terms: Public domain W3C validator