| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2ia | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 |
|
| Ref | Expression |
|---|---|
| mpteq2ia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | 1 | ax-gen 1495 |
. 2
|
| 3 | mpteq2ia.1 |
. . 3
| |
| 4 | 3 | rgen 2583 |
. 2
|
| 5 | mpteq12f 4164 |
. 2
| |
| 6 | 2, 4, 5 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4146 df-mpt 4147 |
| This theorem is referenced by: mpteq2i 4171 feqresmpt 5688 elfvmptrab 5730 fmptap 5829 offres 6280 cnrecnv 11421 ege2le3 12182 eirraplem 12288 cnmpt1st 14962 cnmpt2nd 14963 expcn 15243 expcncf 15283 dvexp 15385 dveflem 15400 dvef 15401 elply2 15409 plyid 15420 |
| Copyright terms: Public domain | W3C validator |