| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2ia | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 |
|
| Ref | Expression |
|---|---|
| mpteq2ia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | 1 | ax-gen 1463 |
. 2
|
| 3 | mpteq2ia.1 |
. . 3
| |
| 4 | 3 | rgen 2550 |
. 2
|
| 5 | mpteq12f 4114 |
. 2
| |
| 6 | 2, 4, 5 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: mpteq2i 4121 feqresmpt 5616 elfvmptrab 5658 fmptap 5753 offres 6193 cnrecnv 11077 ege2le3 11838 eirraplem 11944 cnmpt1st 14534 cnmpt2nd 14535 expcn 14815 expcncf 14855 dvexp 14957 dveflem 14972 dvef 14973 elply2 14981 plyid 14992 |
| Copyright terms: Public domain | W3C validator |