| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2ia | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 |
|
| Ref | Expression |
|---|---|
| mpteq2ia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | 1 | ax-gen 1463 |
. 2
|
| 3 | mpteq2ia.1 |
. . 3
| |
| 4 | 3 | rgen 2550 |
. 2
|
| 5 | mpteq12f 4114 |
. 2
| |
| 6 | 2, 4, 5 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: mpteq2i 4121 feqresmpt 5618 elfvmptrab 5660 fmptap 5755 offres 6201 cnrecnv 11094 ege2le3 11855 eirraplem 11961 cnmpt1st 14610 cnmpt2nd 14611 expcn 14891 expcncf 14931 dvexp 15033 dveflem 15048 dvef 15049 elply2 15057 plyid 15068 |
| Copyright terms: Public domain | W3C validator |