ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1 Unicode version

Theorem mpteq1 4118
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpteq1  |-  ( A  =  B  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem mpteq1
StepHypRef Expression
1 eqidd 2197 . . 3  |-  ( x  e.  A  ->  C  =  C )
21rgen 2550 . 2  |-  A. x  e.  A  C  =  C
3 mpteq12 4117 . 2  |-  ( ( A  =  B  /\  A. x  e.  A  C  =  C )  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
42, 3mpan2 425 1  |-  ( A  =  B  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475    |-> cmpt 4095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4096  df-mpt 4097
This theorem is referenced by:  mpteq1d  4119  fmptap  5755  mpompt  6018  mpomptsx  6264  mpompts  6265  tposf12  6336  restco  14494  cnmpt1t  14605  cnmpt2t  14613
  Copyright terms: Public domain W3C validator