ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1 Unicode version

Theorem mpteq1 3928
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpteq1  |-  ( A  =  B  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem mpteq1
StepHypRef Expression
1 eqidd 2090 . . 3  |-  ( x  e.  A  ->  C  =  C )
21rgen 2429 . 2  |-  A. x  e.  A  C  =  C
3 mpteq12 3927 . 2  |-  ( ( A  =  B  /\  A. x  e.  A  C  =  C )  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
42, 3mpan2 417 1  |-  ( A  =  B  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439   A.wral 2360    |-> cmpt 3905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-ral 2365  df-opab 3906  df-mpt 3907
This theorem is referenced by:  mpteq1d  3929  fmptap  5501  mpt2mpt  5754  mpt2mptsx  5981  mpt2mpts  5982  tposf12  6048
  Copyright terms: Public domain W3C validator