Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > offval | Unicode version |
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | |
offval.2 | |
offval.3 | |
offval.4 | |
offval.5 | |
offval.6 | |
offval.7 |
Ref | Expression |
---|---|
offval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . 4 | |
2 | offval.3 | . . . 4 | |
3 | fnex 5707 | . . . 4 | |
4 | 1, 2, 3 | syl2anc 409 | . . 3 |
5 | offval.2 | . . . 4 | |
6 | offval.4 | . . . 4 | |
7 | fnex 5707 | . . . 4 | |
8 | 5, 6, 7 | syl2anc 409 | . . 3 |
9 | fndm 5287 | . . . . . . . 8 | |
10 | 1, 9 | syl 14 | . . . . . . 7 |
11 | fndm 5287 | . . . . . . . 8 | |
12 | 5, 11 | syl 14 | . . . . . . 7 |
13 | 10, 12 | ineq12d 3324 | . . . . . 6 |
14 | offval.5 | . . . . . 6 | |
15 | 13, 14 | eqtrdi 2215 | . . . . 5 |
16 | 15 | mpteq1d 4067 | . . . 4 |
17 | inex1g 4118 | . . . . . 6 | |
18 | 14, 17 | eqeltrrid 2254 | . . . . 5 |
19 | mptexg 5710 | . . . . 5 | |
20 | 2, 18, 19 | 3syl 17 | . . . 4 |
21 | 16, 20 | eqeltrd 2243 | . . 3 |
22 | dmeq 4804 | . . . . . 6 | |
23 | dmeq 4804 | . . . . . 6 | |
24 | 22, 23 | ineqan12d 3325 | . . . . 5 |
25 | fveq1 5485 | . . . . . 6 | |
26 | fveq1 5485 | . . . . . 6 | |
27 | 25, 26 | oveqan12d 5861 | . . . . 5 |
28 | 24, 27 | mpteq12dv 4064 | . . . 4 |
29 | df-of 6050 | . . . 4 | |
30 | 28, 29 | ovmpoga 5971 | . . 3 |
31 | 4, 8, 21, 30 | syl3anc 1228 | . 2 |
32 | 14 | eleq2i 2233 | . . . . 5 |
33 | elin 3305 | . . . . 5 | |
34 | 32, 33 | bitr3i 185 | . . . 4 |
35 | offval.6 | . . . . . 6 | |
36 | 35 | adantrr 471 | . . . . 5 |
37 | offval.7 | . . . . . 6 | |
38 | 37 | adantrl 470 | . . . . 5 |
39 | 36, 38 | oveq12d 5860 | . . . 4 |
40 | 34, 39 | sylan2b 285 | . . 3 |
41 | 40 | mpteq2dva 4072 | . 2 |
42 | 31, 16, 41 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 cin 3115 cmpt 4043 cdm 4604 wfn 5183 cfv 5188 (class class class)co 5842 cof 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 |
This theorem is referenced by: ofvalg 6059 off 6062 ofres 6064 offval2 6065 suppssof1 6067 ofco 6068 offveqb 6069 |
Copyright terms: Public domain | W3C validator |