Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > offval | Unicode version |
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | |
offval.2 | |
offval.3 | |
offval.4 | |
offval.5 | |
offval.6 | |
offval.7 |
Ref | Expression |
---|---|
offval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . 4 | |
2 | offval.3 | . . . 4 | |
3 | fnex 5718 | . . . 4 | |
4 | 1, 2, 3 | syl2anc 409 | . . 3 |
5 | offval.2 | . . . 4 | |
6 | offval.4 | . . . 4 | |
7 | fnex 5718 | . . . 4 | |
8 | 5, 6, 7 | syl2anc 409 | . . 3 |
9 | fndm 5297 | . . . . . . . 8 | |
10 | 1, 9 | syl 14 | . . . . . . 7 |
11 | fndm 5297 | . . . . . . . 8 | |
12 | 5, 11 | syl 14 | . . . . . . 7 |
13 | 10, 12 | ineq12d 3329 | . . . . . 6 |
14 | offval.5 | . . . . . 6 | |
15 | 13, 14 | eqtrdi 2219 | . . . . 5 |
16 | 15 | mpteq1d 4074 | . . . 4 |
17 | inex1g 4125 | . . . . . 6 | |
18 | 14, 17 | eqeltrrid 2258 | . . . . 5 |
19 | mptexg 5721 | . . . . 5 | |
20 | 2, 18, 19 | 3syl 17 | . . . 4 |
21 | 16, 20 | eqeltrd 2247 | . . 3 |
22 | dmeq 4811 | . . . . . 6 | |
23 | dmeq 4811 | . . . . . 6 | |
24 | 22, 23 | ineqan12d 3330 | . . . . 5 |
25 | fveq1 5495 | . . . . . 6 | |
26 | fveq1 5495 | . . . . . 6 | |
27 | 25, 26 | oveqan12d 5872 | . . . . 5 |
28 | 24, 27 | mpteq12dv 4071 | . . . 4 |
29 | df-of 6061 | . . . 4 | |
30 | 28, 29 | ovmpoga 5982 | . . 3 |
31 | 4, 8, 21, 30 | syl3anc 1233 | . 2 |
32 | 14 | eleq2i 2237 | . . . . 5 |
33 | elin 3310 | . . . . 5 | |
34 | 32, 33 | bitr3i 185 | . . . 4 |
35 | offval.6 | . . . . . 6 | |
36 | 35 | adantrr 476 | . . . . 5 |
37 | offval.7 | . . . . . 6 | |
38 | 37 | adantrl 475 | . . . . 5 |
39 | 36, 38 | oveq12d 5871 | . . . 4 |
40 | 34, 39 | sylan2b 285 | . . 3 |
41 | 40 | mpteq2dva 4079 | . 2 |
42 | 31, 16, 41 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cin 3120 cmpt 4050 cdm 4611 wfn 5193 cfv 5198 (class class class)co 5853 cof 6059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 |
This theorem is referenced by: ofvalg 6070 off 6073 ofres 6075 offval2 6076 suppssof1 6078 ofco 6079 offveqb 6080 |
Copyright terms: Public domain | W3C validator |