ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval Unicode version

Theorem offval 6057
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
offval.6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
offval.7  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
Assertion
Ref Expression
offval  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( C R D ) ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x    x, S    x, R
Allowed substitution hints:    B( x)    C( x)    D( x)    V( x)    W( x)

Proof of Theorem offval
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4  |-  ( ph  ->  F  Fn  A )
2 offval.3 . . . 4  |-  ( ph  ->  A  e.  V )
3 fnex 5707 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
41, 2, 3syl2anc 409 . . 3  |-  ( ph  ->  F  e.  _V )
5 offval.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 offval.4 . . . 4  |-  ( ph  ->  B  e.  W )
7 fnex 5707 . . . 4  |-  ( ( G  Fn  B  /\  B  e.  W )  ->  G  e.  _V )
85, 6, 7syl2anc 409 . . 3  |-  ( ph  ->  G  e.  _V )
9 fndm 5287 . . . . . . . 8  |-  ( F  Fn  A  ->  dom  F  =  A )
101, 9syl 14 . . . . . . 7  |-  ( ph  ->  dom  F  =  A )
11 fndm 5287 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
125, 11syl 14 . . . . . . 7  |-  ( ph  ->  dom  G  =  B )
1310, 12ineq12d 3324 . . . . . 6  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
14 offval.5 . . . . . 6  |-  ( A  i^i  B )  =  S
1513, 14eqtrdi 2215 . . . . 5  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  S )
1615mpteq1d 4067 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
17 inex1g 4118 . . . . . 6  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )
1814, 17eqeltrrid 2254 . . . . 5  |-  ( A  e.  V  ->  S  e.  _V )
19 mptexg 5710 . . . . 5  |-  ( S  e.  _V  ->  (
x  e.  S  |->  ( ( F `  x
) R ( G `
 x ) ) )  e.  _V )
202, 18, 193syl 17 . . . 4  |-  ( ph  ->  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
2116, 20eqeltrd 2243 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  e. 
_V )
22 dmeq 4804 . . . . . 6  |-  ( f  =  F  ->  dom  f  =  dom  F )
23 dmeq 4804 . . . . . 6  |-  ( g  =  G  ->  dom  g  =  dom  G )
2422, 23ineqan12d 3325 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( dom  f  i^i 
dom  g )  =  ( dom  F  i^i  dom 
G ) )
25 fveq1 5485 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
26 fveq1 5485 . . . . . 6  |-  ( g  =  G  ->  (
g `  x )  =  ( G `  x ) )
2725, 26oveqan12d 5861 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) R ( g `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
2824, 27mpteq12dv 4064 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) R ( g `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
29 df-of 6050 . . . 4  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
3028, 29ovmpoga 5971 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V  /\  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
314, 8, 21, 30syl3anc 1228 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
3214eleq2i 2233 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  x  e.  S
)
33 elin 3305 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3432, 33bitr3i 185 . . . 4  |-  ( x  e.  S  <->  ( x  e.  A  /\  x  e.  B ) )
35 offval.6 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
3635adantrr 471 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( F `  x
)  =  C )
37 offval.7 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
3837adantrl 470 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( G `  x
)  =  D )
3936, 38oveq12d 5860 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( ( F `  x ) R ( G `  x ) )  =  ( C R D ) )
4034, 39sylan2b 285 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  (
( F `  x
) R ( G `
 x ) )  =  ( C R D ) )
4140mpteq2dva 4072 . 2  |-  ( ph  ->  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( C R D ) ) )
4231, 16, 413eqtrd 2202 1  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( C R D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115    |-> cmpt 4043   dom cdm 4604    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    oFcof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by:  ofvalg  6059  off  6062  ofres  6064  offval2  6065  suppssof1  6067  ofco  6068  offveqb  6069
  Copyright terms: Public domain W3C validator