ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval Unicode version

Theorem offval 6143
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
offval.6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
offval.7  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
Assertion
Ref Expression
offval  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( C R D ) ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x    x, S    x, R
Allowed substitution hints:    B( x)    C( x)    D( x)    V( x)    W( x)

Proof of Theorem offval
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4  |-  ( ph  ->  F  Fn  A )
2 offval.3 . . . 4  |-  ( ph  ->  A  e.  V )
3 fnex 5784 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
41, 2, 3syl2anc 411 . . 3  |-  ( ph  ->  F  e.  _V )
5 offval.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 offval.4 . . . 4  |-  ( ph  ->  B  e.  W )
7 fnex 5784 . . . 4  |-  ( ( G  Fn  B  /\  B  e.  W )  ->  G  e.  _V )
85, 6, 7syl2anc 411 . . 3  |-  ( ph  ->  G  e.  _V )
9 fndm 5357 . . . . . . . 8  |-  ( F  Fn  A  ->  dom  F  =  A )
101, 9syl 14 . . . . . . 7  |-  ( ph  ->  dom  F  =  A )
11 fndm 5357 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
125, 11syl 14 . . . . . . 7  |-  ( ph  ->  dom  G  =  B )
1310, 12ineq12d 3365 . . . . . 6  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
14 offval.5 . . . . . 6  |-  ( A  i^i  B )  =  S
1513, 14eqtrdi 2245 . . . . 5  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  S )
1615mpteq1d 4118 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
17 inex1g 4169 . . . . . 6  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )
1814, 17eqeltrrid 2284 . . . . 5  |-  ( A  e.  V  ->  S  e.  _V )
19 mptexg 5787 . . . . 5  |-  ( S  e.  _V  ->  (
x  e.  S  |->  ( ( F `  x
) R ( G `
 x ) ) )  e.  _V )
202, 18, 193syl 17 . . . 4  |-  ( ph  ->  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
2116, 20eqeltrd 2273 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  e. 
_V )
22 dmeq 4866 . . . . . 6  |-  ( f  =  F  ->  dom  f  =  dom  F )
23 dmeq 4866 . . . . . 6  |-  ( g  =  G  ->  dom  g  =  dom  G )
2422, 23ineqan12d 3366 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( dom  f  i^i 
dom  g )  =  ( dom  F  i^i  dom 
G ) )
25 fveq1 5557 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
26 fveq1 5557 . . . . . 6  |-  ( g  =  G  ->  (
g `  x )  =  ( G `  x ) )
2725, 26oveqan12d 5941 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) R ( g `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
2824, 27mpteq12dv 4115 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) R ( g `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
29 df-of 6135 . . . 4  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
3028, 29ovmpoga 6052 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V  /\  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
314, 8, 21, 30syl3anc 1249 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
3214eleq2i 2263 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  x  e.  S
)
33 elin 3346 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3432, 33bitr3i 186 . . . 4  |-  ( x  e.  S  <->  ( x  e.  A  /\  x  e.  B ) )
35 offval.6 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
3635adantrr 479 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( F `  x
)  =  C )
37 offval.7 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
3837adantrl 478 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( G `  x
)  =  D )
3936, 38oveq12d 5940 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( ( F `  x ) R ( G `  x ) )  =  ( C R D ) )
4034, 39sylan2b 287 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  (
( F `  x
) R ( G `
 x ) )  =  ( C R D ) )
4140mpteq2dva 4123 . 2  |-  ( ph  ->  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( C R D ) ) )
4231, 16, 413eqtrd 2233 1  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( C R D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    |-> cmpt 4094   dom cdm 4663    Fn wfn 5253   ` cfv 5258  (class class class)co 5922    oFcof 6133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135
This theorem is referenced by:  ofvalg  6145  off  6148  ofres  6150  offval2  6151  suppssof1  6153  ofco  6154  offveqb  6155
  Copyright terms: Public domain W3C validator